Properties

Label 1.3.ac
Base field $\F_{3}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $1$
L-polynomial:  $1 - 2 x + 3 x^{2}$
Frobenius angles:  $\pm0.304086723985$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-2}) \)
Galois group:  $C_2$
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobian of 1 curve (which is hyperelliptic), and hence is principally polarizable:

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2$ $12$ $38$ $96$ $242$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $2$ $12$ $38$ $96$ $242$ $684$ $2102$ $6528$ $19874$ $59532$

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}) \).
All geometric endomorphisms are defined over $\F_{3}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension degreeCommon base change
1.3.c$2$1.9.c