Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 8 x + 79 x^{2}$ |
| Frobenius angles: | $\pm0.648588554586$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-7}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $10$ |
| Isomorphism classes: | 10 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $88$ | $6336$ | $491656$ | $38953728$ | $3077136568$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $88$ | $6336$ | $491656$ | $38953728$ | $3077136568$ | $243086526144$ | $19203910087912$ | $1517108874513408$ | $119851595378725144$ | $9468276082354051776$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):
- $y^2=x^3+26 x+78$
- $y^2=x^3+41 x+44$
- $y^2=x^3+30 x+11$
- $y^2=x^3+5 x+5$
- $y^2=x^3+6 x+6$
- $y^2=x^3+59 x+59$
- $y^2=x^3+74 x+64$
- $y^2=x^3+10 x+10$
- $y^2=x^3+4 x+4$
- $y^2=x^3+50 x+50$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-7}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.79.ai | $2$ | (not in LMFDB) |