Properties

Label 2-296208-1.1-c1-0-125
Degree $2$
Conductor $296208$
Sign $-1$
Analytic cond. $2365.23$
Root an. cond. $48.6336$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·13-s − 17-s + 4·19-s + 4·23-s − 5·25-s + 8·31-s − 4·37-s + 6·41-s + 8·43-s − 8·47-s − 7·49-s − 10·53-s − 12·61-s − 8·67-s + 12·71-s − 2·73-s − 4·79-s − 16·83-s − 10·89-s − 18·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.66·13-s − 0.242·17-s + 0.917·19-s + 0.834·23-s − 25-s + 1.43·31-s − 0.657·37-s + 0.937·41-s + 1.21·43-s − 1.16·47-s − 49-s − 1.37·53-s − 1.53·61-s − 0.977·67-s + 1.42·71-s − 0.234·73-s − 0.450·79-s − 1.75·83-s − 1.05·89-s − 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296208\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(2365.23\)
Root analytic conductor: \(48.6336\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 296208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.89899535327330, −12.54465031831879, −11.98623388637350, −11.38614703445386, −11.16292579952274, −10.81290990909137, −10.13252721102170, −9.649145077120780, −9.336166750634297, −8.685039763929958, −8.363942179643884, −7.845933728014993, −7.400698373298976, −6.778705281633151, −6.305642916398478, −5.877196196990477, −5.500283814467292, −4.622094216454769, −4.465453934766768, −3.701745705438684, −3.152763562497107, −2.881962378105493, −1.932509326780369, −1.378330846150364, −0.9138608159844345, 0, 0.9138608159844345, 1.378330846150364, 1.932509326780369, 2.881962378105493, 3.152763562497107, 3.701745705438684, 4.465453934766768, 4.622094216454769, 5.500283814467292, 5.877196196990477, 6.305642916398478, 6.778705281633151, 7.400698373298976, 7.845933728014993, 8.363942179643884, 8.685039763929958, 9.336166750634297, 9.649145077120780, 10.13252721102170, 10.81290990909137, 11.16292579952274, 11.38614703445386, 11.98623388637350, 12.54465031831879, 12.89899535327330

Graph of the $Z$-function along the critical line