Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 8 x + 47 x^{2}$ |
| Frobenius angles: | $\pm0.698301488982$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-31}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $56$ | $2240$ | $103208$ | $4883200$ | $229345816$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $2240$ | $103208$ | $4883200$ | $229345816$ | $10779043520$ | $506624456968$ | $23811284044800$ | $1119130431222776$ | $52599132693867200$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+37 x+44$
- $y^2=x^3+26 x+36$
- $y^2=x^3+12 x+12$
- $y^2=x^3+41 x+17$
- $y^2=x^3+4 x+20$
- $y^2=x^3+15 x+28$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-31}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.47.ai | $2$ | (not in LMFDB) |