Invariants
Base field: | $\F_{53}$ |
Dimension: | $1$ |
L-polynomial: | $1 + 10 x + 53 x^{2}$ |
Frobenius angles: | $\pm0.740986412023$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-7}) \) |
Galois group: | $C_2$ |
Jacobians: | $4$ |
Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $64$ | $2816$ | $148288$ | $7896064$ | $418170944$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $64$ | $2816$ | $148288$ | $7896064$ | $418170944$ | $22164310784$ | $1174712944448$ | $62259675033600$ | $3299763649935424$ | $174887470599201536$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+28 x+28$
- $y^2=x^3+5 x+5$
- $y^2=x^3+48 x+48$
- $y^2=x^3+3 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-7}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.53.ak | $2$ | (not in LMFDB) |