Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 2 x + 73 x^{2}$ |
| Frobenius angles: | $\pm0.537340940774$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $9$ |
| Isomorphism classes: | 9 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $76$ | $5472$ | $388588$ | $28388736$ | $2073121996$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $76$ | $5472$ | $388588$ | $28388736$ | $2073121996$ | $151334819424$ | $11047393653484$ | $806460058326528$ | $58871587130592844$ | $4297625831309339232$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 9 curves (of which 0 are hyperelliptic):
- $y^2=x^3+21 x+21$
- $y^2=x^3+64 x+28$
- $y^2=x^3+3 x+15$
- $y^2=x^3+46 x+46$
- $y^2=x^3+25 x+52$
- $y^2=x^3+62 x+18$
- $y^2=x^3+61 x+61$
- $y^2=x^3+18 x+17$
- $y^2=x^3+37 x+37$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.73.ac | $2$ | (not in LMFDB) |