Properties

Label 1.79.e
Base field $\F_{79}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $1$
L-polynomial:  $1 + 4 x + 79 x^{2}$
Frobenius angles:  $\pm0.572243955238$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  $10$
Isomorphism classes:  10

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $84$ $6384$ $492156$ $38942400$ $3077156964$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $84$ $6384$ $492156$ $38942400$ $3077156964$ $243087660144$ $19203900223116$ $1517108828793600$ $119851596599350644$ $9468276078667841904$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
1.79.ae$2$(not in LMFDB)
1.79.ar$3$(not in LMFDB)
1.79.n$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.79.ae$2$(not in LMFDB)
1.79.ar$3$(not in LMFDB)
1.79.n$3$(not in LMFDB)
1.79.an$6$(not in LMFDB)
1.79.r$6$(not in LMFDB)