Invariants
Base field: | $\F_{79}$ |
Dimension: | $1$ |
L-polynomial: | $1 + 4 x + 79 x^{2}$ |
Frobenius angles: | $\pm0.572243955238$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}) \) |
Galois group: | $C_2$ |
Jacobians: | $10$ |
Isomorphism classes: | 10 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $84$ | $6384$ | $492156$ | $38942400$ | $3077156964$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $6384$ | $492156$ | $38942400$ | $3077156964$ | $243087660144$ | $19203900223116$ | $1517108828793600$ | $119851596599350644$ | $9468276078667841904$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):
- $y^2=x^3+18 x+18$
- $y^2=x^3+61 x+61$
- $y^2=x^3+56 x+10$
- $y^2=x^3+63 x+63$
- $y^2=x^3+15 x+45$
- $y^2=x^3+23 x+69$
- $y^2=x^3+36 x+36$
- $y^2=x^3+1$
- $y^2=x^3+x+3$
- $y^2=x^3+24 x+24$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \). |
Base change
This is a primitive isogeny class.