Invariants
Base field: | $\F_{43}$ |
Dimension: | $1$ |
L-polynomial: | $1 - 8 x + 43 x^{2}$ |
Frobenius angles: | $\pm0.291171725172$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}) \) |
Galois group: | $C_2$ |
Jacobians: | $6$ |
Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $36$ | $1872$ | $80028$ | $3422016$ | $147011796$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $1872$ | $80028$ | $3422016$ | $147011796$ | $6321251664$ | $271817575884$ | $11688196785408$ | $502592628513924$ | $21611482596065232$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+2 x+2$
- $y^2=x^3+6 x+6$
- $y^2=x^3+14 x+28$
- $y^2=x^3+11 x+22$
- $y^2=x^3+42 x+42$
- $y^2=x^3+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \). |
Base change
This is a primitive isogeny class.