Properties

Label 2-282240-1.1-c1-0-142
Degree $2$
Conductor $282240$
Sign $-1$
Analytic cond. $2253.69$
Root an. cond. $47.4731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·11-s − 8·17-s − 4·19-s + 25-s − 6·29-s + 2·31-s + 4·37-s + 6·41-s − 4·43-s + 6·53-s − 2·55-s − 2·59-s − 10·61-s + 4·67-s + 12·71-s + 14·73-s + 10·79-s + 4·83-s + 8·85-s + 6·89-s + 4·95-s − 6·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.603·11-s − 1.94·17-s − 0.917·19-s + 1/5·25-s − 1.11·29-s + 0.359·31-s + 0.657·37-s + 0.937·41-s − 0.609·43-s + 0.824·53-s − 0.269·55-s − 0.260·59-s − 1.28·61-s + 0.488·67-s + 1.42·71-s + 1.63·73-s + 1.12·79-s + 0.439·83-s + 0.867·85-s + 0.635·89-s + 0.410·95-s − 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 282240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 282240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(282240\)    =    \(2^{7} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(2253.69\)
Root analytic conductor: \(47.4731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 282240,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.01089198263735, −12.39412158255526, −12.19619899078785, −11.42426958002465, −11.14166913234426, −10.85955659597179, −10.33984154952186, −9.521269433239859, −9.327521950872304, −8.836849823808498, −8.334234333045157, −7.910251658392812, −7.357329256300145, −6.755165614760991, −6.457964461736315, −6.059039073840007, −5.266093049150790, −4.783656471582889, −4.222010957326411, −3.917510958502405, −3.370479213318438, −2.406857447915067, −2.275826361897731, −1.475577618368282, −0.6642392167847912, 0, 0.6642392167847912, 1.475577618368282, 2.275826361897731, 2.406857447915067, 3.370479213318438, 3.917510958502405, 4.222010957326411, 4.783656471582889, 5.266093049150790, 6.059039073840007, 6.457964461736315, 6.755165614760991, 7.357329256300145, 7.910251658392812, 8.334234333045157, 8.836849823808498, 9.327521950872304, 9.521269433239859, 10.33984154952186, 10.85955659597179, 11.14166913234426, 11.42426958002465, 12.19619899078785, 12.39412158255526, 13.01089198263735

Graph of the $Z$-function along the critical line