Invariants
Base field: | $\F_{79}$ |
Dimension: | $1$ |
L-polynomial: | $1 - 10 x + 79 x^{2}$ |
Frobenius angles: | $\pm0.309822710654$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-6}) \) |
Galois group: | $C_2$ |
Jacobians: | $8$ |
Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $70$ | $6300$ | $494410$ | $38959200$ | $3077039350$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $70$ | $6300$ | $494410$ | $38959200$ | $3077039350$ | $243086564700$ | $19203901424890$ | $1517108804668800$ | $119851596527581030$ | $9468276088490257500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+22 x+22$
- $y^2=x^3+78 x+76$
- $y^2=x^3+42 x+47$
- $y^2=x^3+63 x+31$
- $y^2=x^3+29 x+29$
- $y^2=x^3+10 x+30$
- $y^2=x^3+65 x+65$
- $y^2=x^3+49 x+68$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-6}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.79.k | $2$ | (not in LMFDB) |