Properties

Label 1.11.ac
Base Field $\F_{11}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{11}$
Dimension:  $1$
L-polynomial:  $1 - 2 x + 11 x^{2}$
Frobenius angles:  $\pm0.402508885479$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-10}) \)
Galois group:  $C_2$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 10 140 1390 14560 160250 1770860 19494590 214381440 2357911210 25937103500

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 10 140 1390 14560 160250 1770860 19494590 214381440 2357911210 25937103500

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-10}) \).
All geometric endomorphisms are defined over $\F_{11}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.11.c$2$1.121.s