Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 4 x + 67 x^{2}$ |
| Frobenius angles: | $\pm0.421429069538$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-7}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $10$ |
| Isomorphism classes: | 10 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $64$ | $4608$ | $301504$ | $20146176$ | $1350055744$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $64$ | $4608$ | $301504$ | $20146176$ | $1350055744$ | $90458436096$ | $6060716468416$ | $406067693395968$ | $27206534133825088$ | $1822837802440647168$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):
- $y^2=x^3+61 x+55$
- $y^2=x^3+52 x+37$
- $y^2=x^3+14 x+14$
- $y^2=x^3+30 x+60$
- $y^2=x^3+42 x+42$
- $y^2=x^3+22 x+44$
- $y^2=x^3+19 x+38$
- $y^2=x^3+5 x+5$
- $y^2=x^3+17 x+17$
- $y^2=x^3+33 x+33$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-7}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.67.e | $2$ | (not in LMFDB) |