Properties

Label 2-15730-1.1-c1-0-21
Degree $2$
Conductor $15730$
Sign $-1$
Analytic cond. $125.604$
Root an. cond. $11.2073$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s + 5-s − 2·6-s − 4·7-s − 8-s + 9-s − 10-s + 2·12-s − 13-s + 4·14-s + 2·15-s + 16-s + 2·17-s − 18-s + 20-s − 8·21-s − 4·23-s − 2·24-s + 25-s + 26-s − 4·27-s − 4·28-s + 8·29-s − 2·30-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.447·5-s − 0.816·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.577·12-s − 0.277·13-s + 1.06·14-s + 0.516·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.223·20-s − 1.74·21-s − 0.834·23-s − 0.408·24-s + 1/5·25-s + 0.196·26-s − 0.769·27-s − 0.755·28-s + 1.48·29-s − 0.365·30-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15730\)    =    \(2 \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(125.604\)
Root analytic conductor: \(11.2073\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 15730,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.17023486654123, −15.92181563594788, −15.10875756550504, −14.65786266346165, −14.06119582878371, −13.50994421749752, −13.07186875156220, −12.30919873799214, −11.98881824827053, −10.97346421697515, −10.36411849576777, −9.723673929606147, −9.503835227479962, −9.025339386488169, −8.138374964863867, −7.922664221324024, −7.062105899563075, −6.347986675261295, −6.056254801655416, −5.050838961608231, −4.005038718165469, −3.317779338690648, −2.741955730883494, −2.251605864937002, −1.144881349036892, 0, 1.144881349036892, 2.251605864937002, 2.741955730883494, 3.317779338690648, 4.005038718165469, 5.050838961608231, 6.056254801655416, 6.347986675261295, 7.062105899563075, 7.922664221324024, 8.138374964863867, 9.025339386488169, 9.503835227479962, 9.723673929606147, 10.36411849576777, 10.97346421697515, 11.98881824827053, 12.30919873799214, 13.07186875156220, 13.50994421749752, 14.06119582878371, 14.65786266346165, 15.10875756550504, 15.92181563594788, 16.17023486654123

Graph of the $Z$-function along the critical line