Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 4 x + 59 x^{2}$ |
| Frobenius angles: | $\pm0.416152878126$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-55}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $56$ | $3584$ | $206024$ | $12113920$ | $714872536$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $3584$ | $206024$ | $12113920$ | $714872536$ | $42180529664$ | $2488654522984$ | $146830449991680$ | $8662995688952696$ | $511116752050978304$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+41 x+23$
- $y^2=x^3+45 x+45$
- $y^2=x^3+48 x+37$
- $y^2=x^3+18 x+18$
- $y^2=x^3+24 x+24$
- $y^2=x^3+8 x+16$
- $y^2=x^3+38 x+38$
- $y^2=x^3+27 x+54$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-55}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.59.e | $2$ | (not in LMFDB) |