Invariants
| Base field: | $\F_{79}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 - 12 x + 79 x^{2}$ | 
| Frobenius angles: | $\pm0.264120855861$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-43}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $4$ | 
| Isomorphism classes: | 4 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $68$ | $6256$ | $494156$ | $38962368$ | $3077115668$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $68$ | $6256$ | $494156$ | $38962368$ | $3077115668$ | $243087196144$ | $19203901191452$ | $1517108736860928$ | $119851595721852644$ | $9468276085268264176$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+53 x+53$
- $y^2=x^3+46 x+46$
- $y^2=x^3+14 x+14$
- $y^2=x^3+51 x+74$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-43}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.79.m | $2$ | (not in LMFDB) | 
