Invariants
Base field: | $\F_{61}$ |
Dimension: | $1$ |
L-polynomial: | $1 + 8 x + 61 x^{2}$ |
Frobenius angles: | $\pm0.671149895095$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-5}) \) |
Galois group: | $C_2$ |
Jacobians: | $6$ |
Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $70$ | $3780$ | $226030$ | $13849920$ | $844621750$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $70$ | $3780$ | $226030$ | $13849920$ | $844621750$ | $51519922020$ | $3142744902430$ | $191707324058880$ | $11694145878290470$ | $713342912704474500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+22 x+22$
- $y^2=x^3+45 x+45$
- $y^2=x^3+40 x+19$
- $y^2=x^3+9 x+9$
- $y^2=x^3+32 x+32$
- $y^2=x^3+33 x+33$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-5}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.61.ai | $2$ | (not in LMFDB) |