Properties

Label 2-102960-1.1-c1-0-126
Degree $2$
Conductor $102960$
Sign $1$
Analytic cond. $822.139$
Root an. cond. $28.6729$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s − 11-s + 13-s − 6·17-s + 4·19-s − 4·23-s + 25-s − 6·29-s − 4·35-s + 2·37-s − 6·41-s − 4·43-s − 8·47-s + 9·49-s − 2·53-s − 55-s − 12·59-s − 2·61-s + 65-s − 8·67-s + 6·73-s + 4·77-s − 8·79-s − 12·83-s − 6·85-s − 14·89-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s − 0.301·11-s + 0.277·13-s − 1.45·17-s + 0.917·19-s − 0.834·23-s + 1/5·25-s − 1.11·29-s − 0.676·35-s + 0.328·37-s − 0.937·41-s − 0.609·43-s − 1.16·47-s + 9/7·49-s − 0.274·53-s − 0.134·55-s − 1.56·59-s − 0.256·61-s + 0.124·65-s − 0.977·67-s + 0.702·73-s + 0.455·77-s − 0.900·79-s − 1.31·83-s − 0.650·85-s − 1.48·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(102960\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(822.139\)
Root analytic conductor: \(28.6729\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 102960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.97017181690153, −13.63685037250970, −13.25810882975823, −12.86588350932525, −12.39144081683320, −11.78799790438823, −11.22264119335868, −10.81521098215792, −10.11247393638907, −9.764521873426440, −9.405681979122673, −8.866426471353936, −8.330696354295214, −7.674563006271787, −7.047474508905620, −6.635714383786839, −6.145457719496595, −5.704450590966093, −5.082188243679694, −4.376340372868033, −3.806253136715024, −3.125911773425120, −2.786736804345249, −1.942310927617893, −1.365896719983630, 0, 0, 1.365896719983630, 1.942310927617893, 2.786736804345249, 3.125911773425120, 3.806253136715024, 4.376340372868033, 5.082188243679694, 5.704450590966093, 6.145457719496595, 6.635714383786839, 7.047474508905620, 7.674563006271787, 8.330696354295214, 8.866426471353936, 9.405681979122673, 9.764521873426440, 10.11247393638907, 10.81521098215792, 11.22264119335868, 11.78799790438823, 12.39144081683320, 12.86588350932525, 13.25810882975823, 13.63685037250970, 13.97017181690153

Graph of the $Z$-function along the critical line