Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 14 x + 97 x^{2}$ |
| Frobenius angles: | $\pm0.751640801674$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $112$ | $9408$ | $911344$ | $88548096$ | $8587205872$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $112$ | $9408$ | $911344$ | $88548096$ | $8587205872$ | $832972061376$ | $80798296723312$ | $7837433417468928$ | $760231059943493488$ | $73742412688607909568$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+9 x+9$
- $y^2=x^3+7 x+35$
- $y^2=x^3+8 x+8$
- $y^2=x^3+77 x+77$
- $y^2=x^3+19$
- $y^2=x^3+38 x+38$
- $y^2=x^3+60 x+60$
- $y^2=x^3+89 x+89$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \). |
Base change
This is a primitive isogeny class.