Invariants
Base field: | $\F_{89}$ |
Dimension: | $1$ |
L-polynomial: | $1 + 14 x + 89 x^{2}$ |
Frobenius angles: | $\pm0.766121877123$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-10}) \) |
Galois group: | $C_2$ |
Jacobians: | $6$ |
Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $104$ | $7904$ | $703976$ | $62757760$ | $5583930664$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $104$ | $7904$ | $703976$ | $62757760$ | $5583930664$ | $496981712864$ | $44231340450856$ | $3936588690378240$ | $350356404827594984$ | $31181719924548468704$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+20 x+60$
- $y^2=x^3+2 x+2$
- $y^2=x^3+60 x+2$
- $y^2=x^3+59 x+59$
- $y^2=x^3+42 x+42$
- $y^2=x^3+14 x+14$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-10}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.89.ao | $2$ | (not in LMFDB) |