Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 2 x + 53 x^{2}$ |
| Frobenius angles: | $\pm0.543861900584$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-13}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $56$ | $2912$ | $148568$ | $7885696$ | $418221496$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $2912$ | $148568$ | $7885696$ | $418221496$ | $22164562784$ | $1174709358424$ | $62259683286528$ | $3299763700466744$ | $174887470525800032$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+26 x+26$
- $y^2=x^3+47 x+41$
- $y^2=x^3+37 x+21$
- $y^2=x^3+34 x+15$
- $y^2=x^3+49 x+45$
- $y^2=x^3+51 x+51$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-13}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.53.ac | $2$ | (not in LMFDB) |