Learn more

Refine search


Results (1-50 of 2908 matches)

Next   displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
1008.a.27216.1 1008.a \( 2^{4} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q \times \Q\) $[8456,9496,26675348,108864]$ $[4228,743250,173847744,45651924783,27216]$ $[\frac{12063042849801664}{243},\frac{167186257609000}{81},\frac{3083035208512}{27}]$ $y^2 + (x^3 + x)y = -4x^4 + 15x^2 - 21$
1012.a.4048.1 1012.a \( 2^{2} \cdot 11 \cdot 23 \) $0$ $\Z/15\Z$ \(\Q\) $[140,2425,78163,-518144]$ $[35,-50,-4,-660,-4048]$ $[-\frac{52521875}{4048},\frac{1071875}{2024},\frac{1225}{1012}]$ $y^2 + (x^3 + 1)y = x^4 + x^3 + x^2 + x$
1038.a.1038.2 1038.a \( 2 \cdot 3 \cdot 173 \) $0$ $\Z/6\Z$ \(\Q\) $[844,4129,1133983,132864]$ $[211,1683,16079,140045,1038]$ $[\frac{418227202051}{1038},\frac{5269995291}{346},\frac{715853159}{1038}]$ $y^2 + (x^3 + 1)y = x^4 + 2x^2 + x + 1$
1038.a.1038.1 1038.a \( 2 \cdot 3 \cdot 173 \) $0$ $\Z/6\Z$ \(\Q\) $[109988,334849,12332566337,132864]$ $[27497,31489590,48060441688,82480921681709,1038]$ $[\frac{15719059879327073637257}{1038},\frac{109111794064913809345}{173},\frac{18168889743107727596}{519}]$ $y^2 + (x^2 + x)y = x^5 - 12x^4 + 26x^3 + 46x^2 + 21x + 3$
1042.a.1042.1 1042.a \( 2 \cdot 521 \) $0$ $\Z/9\Z$ \(\Q\) $[480,3912,728889,-4168]$ $[240,1748,-5521,-1095136,-1042]$ $[-\frac{398131200000}{521},-\frac{12082176000}{521},\frac{159004800}{521}]$ $y^2 + (x^3 + x)y = -x^4 - x^3 - x^2 + 2x + 2$
1047.a.3141.1 1047.a \( 3 \cdot 349 \) $0$ $\Z/10\Z$ \(\Q\) $[8,604,1017,-12564]$ $[4,-100,-1,-2501,-3141]$ $[-\frac{1024}{3141},\frac{6400}{3141},\frac{16}{3141}]$ $y^2 + (x^3 + x)y = x$
1050.a.131250.1 1050.a \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[11868,198609,759217863,16800000]$ $[2967,358520,56735700,9949557875,131250]$ $[\frac{76641937806559869}{43750},\frac{312136655012892}{4375},\frac{475666111026}{125}]$ $y^2 + (x^2 + x)y = 3x^6 + 8x^5 + 15x^4 + 17x^3 + 15x^2 + 8x + 3$
1051.a.1051.1 1051.a \( 1051 \) $1$ $\mathsf{trivial}$ \(\Q\) $[96,-144,144,4204]$ $[48,120,-80,-4560,1051]$ $[\frac{254803968}{1051},\frac{13271040}{1051},-\frac{184320}{1051}]$ $y^2 + y = x^5 - x^4 + x^2 - x$
1051.b.1051.1 1051.b \( 1051 \) $0$ $\Z/8\Z$ \(\Q\) $[64,-200,185,4204]$ $[32,76,-241,-3372,1051]$ $[\frac{33554432}{1051},\frac{2490368}{1051},-\frac{246784}{1051}]$ $y^2 + (x + 1)y = -x^5 - x^4$
1051.b.1051.2 1051.b \( 1051 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[6176,-50240,-103225225,-4204]$ $[3088,405696,72449921,14784027908,-1051]$ $[-\frac{280793117300359168}{1051},-\frac{11946277554880512}{1051},-\frac{690863899476224}{1051}]$ $y^2 + xy = x^5 + 8x^4 + 16x^3 + x$
1055.a.1055.1 1055.a \( 5 \cdot 211 \) $0$ $\Z/6\Z$ \(\Q\) $[500,-3023,-525127,-135040]$ $[125,777,7441,81599,-1055]$ $[-\frac{6103515625}{211},-\frac{303515625}{211},-\frac{23253125}{211}]$ $y^2 + (x^3 + 1)y = -x^4 + x^2 - x - 1$
1062.a.6372.1 1062.a \( 2 \cdot 3^{2} \cdot 59 \) $1$ $\Z/2\Z$ \(\Q\) $[300,2601,306603,-815616]$ $[75,126,-1024,-23169,-6372]$ $[-\frac{87890625}{236},-\frac{984375}{118},\frac{160000}{177}]$ $y^2 + (x^3 + 1)y = x^5 - x^4 + x^2 - x$
1069.a.1069.1 1069.a \( 1069 \) $0$ $\Z/7\Z$ \(\Q\) $[244,3193,263789,136832]$ $[61,22,-884,-13602,1069]$ $[\frac{844596301}{1069},\frac{4993582}{1069},-\frac{3289364}{1069}]$ $y^2 + (x^2 + x + 1)y = x^5 + x^3$
1070.a.2140.1 1070.a \( 2 \cdot 5 \cdot 107 \) $1$ $\Z/4\Z$ \(\Q\) $[12,3321,141939,273920]$ $[3,-138,-1856,-6153,2140]$ $[\frac{243}{2140},-\frac{1863}{1070},-\frac{4176}{535}]$ $y^2 + (x^3 + 1)y = x^3 - x$
1077.a.1077.2 1077.a \( 3 \cdot 359 \) $1$ $\Z/2\Z$ \(\Q\) $[268,2233,175667,137856]$ $[67,94,-12,-2410,1077]$ $[\frac{1350125107}{1077},\frac{28271722}{1077},-\frac{17956}{359}]$ $y^2 + (x^3 + 1)y = x^4 + x^3 + 2x^2 + x$
1077.a.1077.1 1077.a \( 3 \cdot 359 \) $1$ $\Z/2\Z$ \(\Q\) $[155924,161593,8379938029,137856]$ $[38981,63306532,137068427976,333836849266358,1077]$ $[\frac{90004636142290020118901}{1077},\frac{3749794358746968581012}{1077},\frac{69425997674312689112}{359}]$ $y^2 + (x^3 + 1)y = 5x^5 + 34x^4 + 80x^3 - x^2 - 90x + 32$
1077.b.1077.1 1077.b \( 3 \cdot 359 \) $0$ $\Z/5\Z$ \(\Q\) $[320,544,55360,4308]$ $[160,976,7360,56256,1077]$ $[\frac{104857600000}{1077},\frac{3997696000}{1077},\frac{188416000}{1077}]$ $y^2 + x^3y = x^5 + x^4 - x - 2$
1077.b.1077.2 1077.b \( 3 \cdot 359 \) $0$ $\mathsf{trivial}$ \(\Q\) $[107840,22281904,765878465200,4308]$ $[53920,117426616,333407026000,1047074174177136,1077]$ $[\frac{455773864377135923200000}{1077},\frac{18408406506675601408000}{1077},\frac{969336384916326400000}{1077}]$ $y^2 + y = x^5 + 14x^4 + 38x^3 - 79x^2 + 15x - 1$
1083.a.1083.1 1083.a \( 3 \cdot 19^{2} \) $1$ $\Z/3\Z$ \(\Q \times \Q\) $[56,244,928,4332]$ $[28,-8,264,1832,1083]$ $[\frac{17210368}{1083},-\frac{175616}{1083},\frac{68992}{361}]$ $y^2 + (x^3 + x^2 + x + 1)y = -x^3$
1083.a.20577.1 1083.a \( 3 \cdot 19^{2} \) $1$ $\Z/3\Z$ \(\Q \times \Q\) $[904,13684,4578992,82308]$ $[452,6232,-8664,-10688488,20577]$ $[\frac{18866536236032}{20577},\frac{30289293824}{1083},-\frac{1634432}{19}]$ $y^2 + x^3y = x^5 - 5x^4 + 11x^3 - 13x^2 + 9x - 3$
1083.b.87723.1 1083.b \( 3 \cdot 19^{2} \) $0$ $\Z/15\Z$ \(\Q \times \Q\) $[5464,8692,15768656,350892]$ $[2732,309544,46549080,7838649656,87723]$ $[\frac{152196082896530432}{87723},\frac{6311963449851392}{87723},\frac{1429770125440}{361}]$ $y^2 + y = -x^6 - 3x^5 - 8x^4 - 11x^3 - 14x^2 - 9x - 6$
1083.b.390963.1 1083.b \( 3 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ \(\Q \times \Q\) $[150440,1945515892,68956865081488,-1563852]$ $[75220,-88500632,98386538568,-107931608328616,-390963]$ $[-\frac{2408056349828975363200000}{390963},\frac{1982406707133537344000}{20577},-\frac{27053302090985600}{19}]$ $y^2 + y = -x^6 + 3x^5 - 50x^4 + 95x^3 - 14x^2 - 33x - 6$
1088.a.1088.1 1088.a \( 2^{6} \cdot 17 \) $0$ $\Z/6\Z$ \(\Q \times \Q\) $[196,28,632,136]$ $[196,1582,17884,250635,1088]$ $[\frac{4519603984}{17},\frac{186120718}{17},631463]$ $y^2 + (x^3 + x^2 + x + 1)y = x^4 + x^3 + 2x^2 + x + 1$
1088.b.2176.1 1088.b \( 2^{6} \cdot 17 \) $0$ $\Z/6\Z$ \(\mathsf{CM} \times \Q\) $[7572,68115,166006308,272]$ $[7572,2343556,952909568,430794130940,2176]$ $[\frac{194465720403941544}{17},\frac{7948719687495546}{17},25108109106912]$ $y^2 + (x^3 + x)y = 4x^4 + 24x^2 + 34$
1088.b.2176.2 1088.b \( 2^{6} \cdot 17 \) $0$ $\Z/12\Z$ \(\mathsf{CM} \times \Q\) $[7572,68115,166006308,272]$ $[7572,2343556,952909568,430794130940,2176]$ $[\frac{194465720403941544}{17},\frac{7948719687495546}{17},25108109106912]$ $y^2 + (x^3 + x)y = -5x^4 + 24x^2 - 34$
1091.a.1091.1 1091.a \( 1091 \) $1$ $\Z/7\Z$ \(\Q\) $[276,1305,42813,139648]$ $[69,144,1208,15654,1091]$ $[\frac{1564031349}{1091},\frac{47305296}{1091},\frac{5751288}{1091}]$ $y^2 + (x^2 + x + 1)y = x^5 - 2x^3 - x^2$
1094.a.2188.1 1094.a \( 2 \cdot 547 \) $1$ $\mathsf{trivial}$ \(\Q\) $[20,3001,-30387,280064]$ $[5,-124,596,-3099,2188]$ $[\frac{3125}{2188},-\frac{3875}{547},\frac{3725}{547}]$ $y^2 + (x^3 + 1)y = x^4 - x^2$
1104.a.17664.1 1104.a \( 2^{4} \cdot 3 \cdot 23 \) $0$ $\Z/10\Z$ \(\Q\) $[88,160,4888,69]$ $[176,864,-1280,-242944,17664]$ $[\frac{659664896}{69},\frac{6133248}{23},-\frac{154880}{69}]$ $y^2 = x^5 - 2x^4 + 4x^3 - 4x^2 + 3x - 1$
1104.b.141312.1 1104.b \( 2^{4} \cdot 3 \cdot 23 \) $0$ $\Z/2\Z$ \(\Q \times \Q\) $[14220,9418737,54280328031,17664]$ $[14220,2146192,-16790479872,-60841690970176,141312]$ $[\frac{189267815942240625}{46},\frac{2008843709918625}{46},-24026098775400]$ $y^2 + (x^3 + x)y = -x^6 - 3x^4 + 29x^2 - 46$
1109.a.1109.1 1109.a \( 1109 \) $0$ $\mathsf{trivial}$ \(\Q\) $[38880,87301728,855606760992,4436]$ $[19440,1196112,510249312,2122140677184,1109]$ $[\frac{2776395315422822400000}{1109},\frac{8787404722987008000}{1109},\frac{192830154395443200}{1109}]$ $y^2 + y = x^5 - 6x^4 - 36x^3 - 6x^2 + 63x - 36$
1109.b.1109.1 1109.b \( 1109 \) $0$ $\Z/7\Z$ \(\Q\) $[248,-32,-10424,4436]$ $[124,646,5388,62699,1109]$ $[\frac{29316250624}{1109},\frac{1231679104}{1109},\frac{82845888}{1109}]$ $y^2 + y = x^5 - x^4 - x^3 + x^2 + x$
1109.c.1109.1 1109.c \( 1109 \) $0$ $\Z/5\Z$ \(\Q\) $[392,292,36703,4436]$ $[196,1552,16001,181873,1109]$ $[\frac{289254654976}{1109},\frac{11685839872}{1109},\frac{614694416}{1109}]$ $y^2 + (x^3 + x)y = x^5 - 2x^3 - 2x^2 - 1$
1116.a.214272.1 1116.a \( 2^{2} \cdot 3^{2} \cdot 31 \) $0$ $\Z/39\Z$ \(\Q\) $[52,22201,238285,-27426816]$ $[13,-918,36,-210564,-214272]$ $[-\frac{371293}{214272},\frac{37349}{3968},-\frac{169}{5952}]$ $y^2 + (x^3 + 1)y = x^4 + 2x^3 + x^2 - x$
1122.a.1122.1 1122.a \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[56004,288321,5331417537,143616]$ $[14001,8155820,6325887612,5512838145803,1122]$ $[\frac{179338702480653356667}{374},\frac{3730727674118765970}{187},1105214886926046]$ $y^2 + (x^2 + x)y = x^5 + 7x^4 - 43x^2 + 51x - 17$
1122.b.2244.1 1122.b \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ \(\Q\) $[1828,153793,73850145,287232]$ $[457,2294,8704,-321177,2244]$ $[\frac{19933382494057}{2244},\frac{109474259971}{1122},\frac{26732672}{33}]$ $y^2 + (x^2 + x)y = x^5 + 7x^4 + 5x^3 - x^2 - x$
1123.a.1123.1 1123.a \( 1123 \) $0$ $\Z/8\Z$ \(\Q\) $[24,-672,-75,4492]$ $[12,118,-361,-4564,1123]$ $[\frac{248832}{1123},\frac{203904}{1123},-\frac{51984}{1123}]$ $y^2 + (x^3 + x)y = -x^4 - x^2 - x$
1125.a.151875.1 1125.a \( 3^{2} \cdot 5^{3} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[8600,612100,1556297975,-607500]$ $[4300,668400,132975225,31258726875,-151875]$ $[-\frac{2352135088000000}{243},-\frac{28342655360000}{81},-\frac{437104339600}{27}]$ $y^2 + xy = 15x^5 + 50x^4 + 55x^3 + 22x^2 + 3x$
1127.a.1127.1 1127.a \( 7^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ \(\Q\) $[60,105,37947,144256]$ $[15,5,-501,-1885,1127]$ $[\frac{759375}{1127},\frac{16875}{1127},-\frac{112725}{1127}]$ $y^2 + (x^3 + x + 1)y = -x^4 + x^3 - x^2 - x$
1136.a.9088.1 1136.a \( 2^{4} \cdot 71 \) $0$ $\Z/14\Z$ \(\Q\) $[432,1368,174708,36352]$ $[216,1716,17596,214020,9088]$ $[\frac{3673320192}{71},\frac{135104112}{71},\frac{6413742}{71}]$ $y^2 + (x^3 + x)y = x^4 - x^3 + 2x^2 - x + 1$
1136.a.290816.1 1136.a \( 2^{4} \cdot 71 \) $0$ $\Z/14\Z$ \(\Q\) $[9252,17217,52921881,36352]$ $[9252,3555168,1815712832,1039938903360,290816]$ $[\frac{66203075280122793}{284},\frac{1374792164318403}{142},\frac{151781365064097}{284}]$ $y^2 + (x^3 + x^2)y = -5x^4 - 9x^3 + 25x^2 + 40x - 24$
1137.a.1137.1 1137.a \( 3 \cdot 379 \) $0$ $\Z/6\Z$ \(\Q\) $[148,-191,28401,145536]$ $[37,65,-359,-4377,1137]$ $[\frac{69343957}{1137},\frac{3292445}{1137},-\frac{491471}{1137}]$ $y^2 + (x^2 + x + 1)y = x^5 + x^4 + x^3$
1142.a.2284.1 1142.a \( 2 \cdot 571 \) $0$ $\Z/10\Z$ \(\Q\) $[472,-2876,-427657,-9136]$ $[236,2800,46521,784739,-2284]$ $[-\frac{183020620544}{571},-\frac{9200979200}{571},-\frac{647758404}{571}]$ $y^2 + (x^3 + x^2)y = -x^4 - x^3 + x^2 - x - 2$
1142.b.9136.1 1142.b \( 2 \cdot 571 \) $0$ $\Z/12\Z$ \(\Q\) $[864,-4488,-1442025,-36544]$ $[432,8524,257089,9600968,-9136]$ $[-\frac{940369969152}{571},-\frac{42951140352}{571},-\frac{2998686096}{571}]$ $y^2 + (x + 1)y = -x^5 + 3x^4 - 6x^2 + x + 3$
1145.a.1145.1 1145.a \( 5 \cdot 229 \) $1$ $\Z/2\Z$ \(\Q\) $[468,5337,771165,146560]$ $[117,348,224,-23724,1145]$ $[\frac{21924480357}{1145},\frac{557361324}{1145},\frac{3066336}{1145}]$ $y^2 + (x^3 + 1)y = -3x^4 + 3x^3 - x$
1145.a.143125.1 1145.a \( 5 \cdot 229 \) $1$ $\Z/2\Z$ \(\Q\) $[5004,191097,289856403,18320000]$ $[1251,57246,3273124,204393402,143125]$ $[\frac{3063984390631251}{143125},\frac{112077149104746}{143125},\frac{5122442333124}{143125}]$ $y^2 + (x^3 + x^2 + x)y = 2x^4 + 4x^3 + 9x^2 + 10x + 9$
1146.a.2292.1 1146.a \( 2 \cdot 3 \cdot 191 \) $0$ $\Z/6\Z$ \(\Q\) $[104,1096,61011,9168]$ $[52,-70,-3815,-50820,2292]$ $[\frac{95051008}{573},-\frac{2460640}{573},-\frac{2578940}{573}]$ $y^2 + xy = x^5 + 3x^4 + 5x^3 + 4x^2 + 2x$
1147.a.35557.1 1147.a \( 31 \cdot 37 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q\) $[3712,11944,14677639,142228]$ $[1856,141540,14195057,1578113548,35557]$ $[\frac{22023678539595776}{35557},\frac{904926084464640}{35557},\frac{48898223869952}{35557}]$ $y^2 + xy = x^5 + 8x^4 + 18x^3 + 8x^2 + x$
1147.a.35557.2 1147.a \( 31 \cdot 37 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[12352,2309104,8338761079,142228]$ $[6176,1204440,279006977,68117844088,35557]$ $[\frac{8985379753611493376}{35557},\frac{283731159059005440}{35557},\frac{10642156427543552}{35557}]$ $y^2 + xy = x^5 + 6x^4 - 32x^2 + x$
1148.a.8036.1 1148.a \( 2^{2} \cdot 7 \cdot 41 \) $0$ $\Z/10\Z$ \(\Q\) $[3540,152577,168647985,1028608]$ $[885,26277,825045,9921024,8036]$ $[\frac{542895639553125}{8036},\frac{18214010942625}{8036},\frac{646195870125}{8036}]$ $y^2 + (x^3 + 1)y = x^5 - x^4 - 6x^3 + x^2 + 5x - 1$
1148.a.47068.1 1148.a \( 2^{2} \cdot 7 \cdot 41 \) $0$ $\Z/10\Z$ \(\Q\) $[1236,129537,36025137,-6024704]$ $[309,-1419,31221,1908432,-47068]$ $[-\frac{2817036000549}{47068},\frac{41865649551}{47068},-\frac{2981012301}{47068}]$ $y^2 + (x^2 + x + 1)y = x^5 + 2x^4 - 5x^3 + x$
Next   displayed columns for results