Properties

Label 1055.a.1055.1
Conductor 1055
Discriminant -1055
Mordell-Weil group \(\Z/{6}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -x^4 + x^2 - x - 1$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -x^4z^2 + x^2z^4 - xz^5 - z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 4x^4 + 2x^3 + 4x^2 - 4x - 3$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, -1, 1, 0, -1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, -1, 1, 0, -1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-3, -4, 4, 2, -4, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1055\) \(=\) \( 5 \cdot 211 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-1055\) \(=\) \( - 5 \cdot 211 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1000\) \(=\)  \( 2^{3} \cdot 5^{3} \)
\( I_4 \)  \(=\) \(-12092\) \(=\)  \( - 2^{2} \cdot 3023 \)
\( I_6 \)  \(=\) \(-4201016\) \(=\)  \( - 2^{3} \cdot 525127 \)
\( I_{10} \)  \(=\) \(-4321280\) \(=\)  \( - 2^{12} \cdot 5 \cdot 211 \)
\( J_2 \)  \(=\) \(125\) \(=\)  \( 5^{3} \)
\( J_4 \)  \(=\) \(777\) \(=\)  \( 3 \cdot 7 \cdot 37 \)
\( J_6 \)  \(=\) \(7441\) \(=\)  \( 7 \cdot 1063 \)
\( J_8 \)  \(=\) \(81599\) \(=\)  \( 7 \cdot 11657 \)
\( J_{10} \)  \(=\) \(-1055\) \(=\)  \( - 5 \cdot 211 \)
\( g_1 \)  \(=\) \(-6103515625/211\)
\( g_2 \)  \(=\) \(-303515625/211\)
\( g_3 \)  \(=\) \(-23253125/211\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (-1 : 0 : 1)\)

magma: [C![-1,0,1],C![1,-1,0],C![1,0,0]];
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{6}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0\) \(6\)

2-torsion field: 6.2.5565125.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 15.57762 \)
Tamagawa product: \( 1 \)
Torsion order:\( 6 \)
Leading coefficient: \( 0.432711 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(5\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 3 T + 5 T^{2} )\)
\(211\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 4 T + 211 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).