Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + 1)y = x^5 - x^4 + x^2 - x$ | (homogenize, simplify) |
$y^2 + (x^3 + z^3)y = x^5z - x^4z^2 + x^2z^4 - xz^5$ | (dehomogenize, simplify) |
$y^2 = x^6 + 4x^5 - 4x^4 + 2x^3 + 4x^2 - 4x + 1$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(1062\) | \(=\) | \( 2 \cdot 3^{2} \cdot 59 \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(6372\) | \(=\) | \( 2^{2} \cdot 3^{3} \cdot 59 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(300\) | \(=\) | \( 2^{2} \cdot 3 \cdot 5^{2} \) |
\( I_4 \) | \(=\) | \(2601\) | \(=\) | \( 3^{2} \cdot 17^{2} \) |
\( I_6 \) | \(=\) | \(306603\) | \(=\) | \( 3^{2} \cdot 11 \cdot 19 \cdot 163 \) |
\( I_{10} \) | \(=\) | \(-815616\) | \(=\) | \( - 2^{9} \cdot 3^{3} \cdot 59 \) |
\( J_2 \) | \(=\) | \(75\) | \(=\) | \( 3 \cdot 5^{2} \) |
\( J_4 \) | \(=\) | \(126\) | \(=\) | \( 2 \cdot 3^{2} \cdot 7 \) |
\( J_6 \) | \(=\) | \(-1024\) | \(=\) | \( - 2^{10} \) |
\( J_8 \) | \(=\) | \(-23169\) | \(=\) | \( - 3 \cdot 7723 \) |
\( J_{10} \) | \(=\) | \(-6372\) | \(=\) | \( - 2^{2} \cdot 3^{3} \cdot 59 \) |
\( g_1 \) | \(=\) | \(-87890625/236\) | ||
\( g_2 \) | \(=\) | \(-984375/118\) | ||
\( g_3 \) | \(=\) | \(160000/177\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points | |||||
---|---|---|---|---|---|
\((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((-1 : 0 : 1)\) | \((0 : -1 : 1)\) | \((1 : 0 : 1)\) |
\((1 : -2 : 1)\) | \((1 : -3 : 2)\) | \((1 : -6 : 2)\) | \((-3 : 70 : 5)\) | \((-3 : -168 : 5)\) |
All points | |||||
---|---|---|---|---|---|
\((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((-1 : 0 : 1)\) | \((0 : -1 : 1)\) | \((1 : 0 : 1)\) |
\((1 : -2 : 1)\) | \((1 : -3 : 2)\) | \((1 : -6 : 2)\) | \((-3 : 70 : 5)\) | \((-3 : -168 : 5)\) |
All points | |||||
---|---|---|---|---|---|
\((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((-1 : 0 : 1)\) | \((0 : -1 : 1)\) | \((0 : 1 : 1)\) | \((1 : -2 : 1)\) |
\((1 : 2 : 1)\) | \((1 : -3 : 2)\) | \((1 : 3 : 2)\) | \((-3 : -238 : 5)\) | \((-3 : 238 : 5)\) |
Number of rational Weierstrass points: \(1\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z/{2}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 0 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2 - z^3\) | \(0.008698\) | \(\infty\) |
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 0 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2 - z^3\) | \(0.008698\) | \(\infty\) |
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 0 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - 2xz^2 - z^3\) | \(0.008698\) | \(\infty\) |
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + z^3\) | \(0\) | \(2\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(1\) |
Mordell-Weil rank: | \(1\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 0.008698 \) |
Real period: | \( 21.57586 \) |
Tamagawa product: | \( 4 \) |
Torsion order: | \( 2 \) |
Leading coefficient: | \( 0.187676 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(1\) | \(2\) | \(2\) | \(1^*\) | \(( 1 + T )( 1 + T + 2 T^{2} )\) | yes | |
\(3\) | \(2\) | \(3\) | \(2\) | \(1\) | \(1 + 3 T + 3 T^{2}\) | yes | |
\(59\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + 8 T + 59 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.60.1 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).