Properties

Label 1125.a.151875.1
Conductor $1125$
Discriminant $-151875$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + xy = 15x^5 + 50x^4 + 55x^3 + 22x^2 + 3x$ (homogenize, simplify)
$y^2 + xz^2y = 15x^5z + 50x^4z^2 + 55x^3z^3 + 22x^2z^4 + 3xz^5$ (dehomogenize, simplify)
$y^2 = 60x^5 + 200x^4 + 220x^3 + 89x^2 + 12x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 3, 22, 55, 50, 15]), R([0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 3, 22, 55, 50, 15], R![0, 1]);
 
sage: X = HyperellipticCurve(R([0, 12, 89, 220, 200, 60]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1125\) \(=\) \( 3^{2} \cdot 5^{3} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-151875\) \(=\) \( - 3^{5} \cdot 5^{4} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(8600\) \(=\)  \( 2^{3} \cdot 5^{2} \cdot 43 \)
\( I_4 \)  \(=\) \(612100\) \(=\)  \( 2^{2} \cdot 5^{2} \cdot 6121 \)
\( I_6 \)  \(=\) \(1556297975\) \(=\)  \( 5^{2} \cdot 62251919 \)
\( I_{10} \)  \(=\) \(-607500\) \(=\)  \( - 2^{2} \cdot 3^{5} \cdot 5^{4} \)
\( J_2 \)  \(=\) \(4300\) \(=\)  \( 2^{2} \cdot 5^{2} \cdot 43 \)
\( J_4 \)  \(=\) \(668400\) \(=\)  \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 557 \)
\( J_6 \)  \(=\) \(132975225\) \(=\)  \( 3^{2} \cdot 5^{2} \cdot 37 \cdot 15973 \)
\( J_8 \)  \(=\) \(31258726875\) \(=\)  \( 3^{3} \cdot 5^{4} \cdot 211 \cdot 8779 \)
\( J_{10} \)  \(=\) \(-151875\) \(=\)  \( - 3^{5} \cdot 5^{4} \)
\( g_1 \)  \(=\) \(-2352135088000000/243\)
\( g_2 \)  \(=\) \(-28342655360000/81\)
\( g_3 \)  \(=\) \(-437104339600/27\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-4 : 18 : 3)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-4 : 18 : 3)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-4 : 0 : 3)\)

magma: [C![-4,18,3],C![0,0,1],C![1,0,0]]; // minimal model
 
magma: [C![-4,0,3],C![0,0,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-4 : 18 : 3) - (1 : 0 : 0)\) \(3x + 4z\) \(=\) \(0,\) \(3y\) \(=\) \(2z^3\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((-4 : 18 : 3) - (1 : 0 : 0)\) \(3x + 4z\) \(=\) \(0,\) \(3y\) \(=\) \(2z^3\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(3x + 4z\) \(=\) \(0,\) \(3y\) \(=\) \(xz^2 + 4z^3\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0\) \(2\)

2-torsion field: 3.1.300.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 1.964401 \)
Tamagawa product: \( 4 \)
Torsion order:\( 4 \)
Leading coefficient: \( 0.491100 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(2\) \(5\) \(2\) \(( 1 + T )^{2}\)
\(5\) \(3\) \(4\) \(2\) \(1 - T\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.120.3 yes
\(3\) 3.80.4 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 15.a
  Elliptic curve isogeny class 75.c

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(3\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);