Properties

Label 1088.a.1088.1
Conductor $1088$
Discriminant $-1088$
Mordell-Weil group \(\Z/{6}\Z\)
Sato-Tate group $N(\mathrm{SU}(2)\times\mathrm{SU}(2))$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type no

Related objects

Learn more

Show commands: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2 + x + 1)y = x^4 + x^3 + 2x^2 + x + 1$ (homogenize, simplify)
$y^2 + (x^3 + x^2z + xz^2 + z^3)y = x^4z^2 + x^3z^3 + 2x^2z^4 + xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^5 + 7x^4 + 8x^3 + 11x^2 + 6x + 5$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, 1, 2, 1, 1]), R([1, 1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, 1, 2, 1, 1], R![1, 1, 1, 1]);
 
sage: X = HyperellipticCurve(R([5, 6, 11, 8, 7, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1088\) \(=\) \( 2^{6} \cdot 17 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-1088\) \(=\) \( - 2^{6} \cdot 17 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(196\) \(=\)  \( 2^{2} \cdot 7^{2} \)
\( I_4 \)  \(=\) \(28\) \(=\)  \( 2^{2} \cdot 7 \)
\( I_6 \)  \(=\) \(632\) \(=\)  \( 2^{3} \cdot 79 \)
\( I_{10} \)  \(=\) \(136\) \(=\)  \( 2^{3} \cdot 17 \)
\( J_2 \)  \(=\) \(196\) \(=\)  \( 2^{2} \cdot 7^{2} \)
\( J_4 \)  \(=\) \(1582\) \(=\)  \( 2 \cdot 7 \cdot 113 \)
\( J_6 \)  \(=\) \(17884\) \(=\)  \( 2^{2} \cdot 17 \cdot 263 \)
\( J_8 \)  \(=\) \(250635\) \(=\)  \( 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 31 \)
\( J_{10} \)  \(=\) \(1088\) \(=\)  \( 2^{6} \cdot 17 \)
\( g_1 \)  \(=\) \(4519603984/17\)
\( g_2 \)  \(=\) \(186120718/17\)
\( g_3 \)  \(=\) \(631463\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0)\)
All points: \((1 : 0 : 0),\, (1 : -1 : 0)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0)\)

magma: [C![1,-1,0],C![1,0,0]]; // minimal model
 
magma: [C![1,-1,0],C![1,1,0]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{6}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 + xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + xz^2 - z^3\) \(0\) \(6\)

2-torsion field: 4.0.272.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 15.72012 \)
Tamagawa product: \( 1 \)
Torsion order:\( 6 \)
Leading coefficient: \( 0.436670 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(6\) \(6\) \(1\) \(1 + 2 T^{2}\)
\(17\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 6 T + 17 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $N(\mathrm{SU}(2)\times\mathrm{SU}(2))$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) \(\Q(\sqrt{2}) \) with defining polynomial:
  \(x^{2} - 2\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 2.2.8.1-17.2-a
  Elliptic curve isogeny class 2.2.8.1-17.1-a

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{2}) \) with defining polynomial \(x^{2} - 2\)

Of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\R \times \R\)