Minimal equation
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 15, -79, 38, 14, 1], R![1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 15, -79, 38, 14, 1]), R([1]))
$y^2 + y = x^5 + 14x^4 + 38x^3 - 79x^2 + 15x - 1$
Invariants
magma: Conductor(LSeries(C)); Factorization($1);
|
|||||
\( N \) | = | \( 1077 \) | = | \( 3 \cdot 359 \) | |
magma: Discriminant(C); Factorization(Integers()!$1);
|
|||||
\( \Delta \) | = | \(1077\) | = | \( 3 \cdot 359 \) |
Igusa-Clebsch invariants
magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
Igusa invariants
magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
G2 invariants
magma: G2Invariants(C);
\( I_2 \) | = | \(431360\) | = | \( 2^{8} \cdot 5 \cdot 337 \) |
\( I_4 \) | = | \(356510464\) | = | \( 2^{8} \cdot 1392619 \) |
\( I_6 \) | = | \(49016221772800\) | = | \( 2^{10} \cdot 5^{2} \cdot 659 \cdot 839 \cdot 3463 \) |
\( I_{10} \) | = | \(4411392\) | = | \( 2^{12} \cdot 3 \cdot 359 \) |
\( J_2 \) | = | \(53920\) | = | \( 2^{5} \cdot 5 \cdot 337 \) |
\( J_4 \) | = | \(117426616\) | = | \( 2^{3} \cdot 17 \cdot 71 \cdot 12161 \) |
\( J_6 \) | = | \(333407026000\) | = | \( 2^{4} \cdot 5^{3} \cdot 17 \cdot 29 \cdot 338141 \) |
\( J_8 \) | = | \(1047074174177136\) | = | \( 2^{4} \cdot 3 \cdot 7 \cdot 17 \cdot 23833 \cdot 7691491 \) |
\( J_{10} \) | = | \(1077\) | = | \( 3 \cdot 359 \) |
\( g_1 \) | = | \(455773864377135923200000/1077\) | ||
\( g_2 \) | = | \(18408406506675601408000/1077\) | ||
\( g_3 \) | = | \(969336384916326400000/1077\) |
Automorphism group
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
|||||
\(\mathrm{Aut}(X)\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) | ||
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
|||||
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) |
Rational points
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
This curve is locally solvable everywhere.
magma: [C![1,0,0]];
All rational points: (1 : 0 : 0)
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
Number of rational Weierstrass points: \(1\)
Invariants of the Jacobian:
Analytic rank: \(0\)
magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
2-Selmer rank: \(0\)
magma: HasSquareSha(Jacobian(C));
Order of Ш*: square
Regulator: 1.0
Real period: 0.40629143137139960141171637930
Tamagawa numbers: 1 (p = 3), 1 (p = 359)
magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
Torsion: \(\mathrm{trivial}\)
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition
Simple over \(\overline{\Q}\)
Endomorphisms
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).