Properties

Label 1069.a.1069.1
Conductor $1069$
Discriminant $1069$
Mordell-Weil group \(\Z/{7}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x + 1)y = x^5 + x^3$ (homogenize, simplify)
$y^2 + (x^2z + xz^2 + z^3)y = x^5z + x^3z^3$ (dehomogenize, simplify)
$y^2 = 4x^5 + x^4 + 6x^3 + 3x^2 + 2x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, 0, 1, 0, 1]), R([1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, 0, 1, 0, 1], R![1, 1, 1]);
 
sage: X = HyperellipticCurve(R([1, 2, 3, 6, 1, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1069\) \(=\) \( 1069 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(1069\) \(=\) \( 1069 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(244\) \(=\)  \( 2^{2} \cdot 61 \)
\( I_4 \)  \(=\) \(3193\) \(=\)  \( 31 \cdot 103 \)
\( I_6 \)  \(=\) \(263789\) \(=\)  \( 17 \cdot 59 \cdot 263 \)
\( I_{10} \)  \(=\) \(136832\) \(=\)  \( 2^{7} \cdot 1069 \)
\( J_2 \)  \(=\) \(61\) \(=\)  \( 61 \)
\( J_4 \)  \(=\) \(22\) \(=\)  \( 2 \cdot 11 \)
\( J_6 \)  \(=\) \(-884\) \(=\)  \( - 2^{2} \cdot 13 \cdot 17 \)
\( J_8 \)  \(=\) \(-13602\) \(=\)  \( - 2 \cdot 3 \cdot 2267 \)
\( J_{10} \)  \(=\) \(1069\) \(=\)  \( 1069 \)
\( g_1 \)  \(=\) \(844596301/1069\)
\( g_2 \)  \(=\) \(4993582/1069\)
\( g_3 \)  \(=\) \(-3289364/1069\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1)\)
All points: \((1 : 0 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1)\)

magma: [C![0,-1,1],C![0,0,1],C![1,0,0]]; // minimal model
 
magma: [C![0,-1,1],C![0,1,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{7}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(7\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(7\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2 + z^3\) \(0\) \(7\)

2-torsion field: 5.1.17104.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(0\)
Regulator: \( 1 \)
Real period: \( 14.93704 \)
Tamagawa product: \( 1 \)
Torsion order:\( 7 \)
Leading coefficient: \( 0.304837 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(1069\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 41 T + 1069 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no
\(7\) not computed yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);