Minimal equation
$y^2 + (x^3 + 1)y = x^4 + 2x^3 + x^2 - x$
Invariants
| \( N \) | = | \( 1116 \) | = | \( 2^{2} \cdot 3^{2} \cdot 31 \) | magma: Conductor(LSeries(C)); Factorization($1);
|
| \( \Delta \) | = | \(-214272\) | = | \( -1 \cdot 2^{8} \cdot 3^{3} \cdot 31 \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | = | \(104\) | = | \( 2^{3} \cdot 13 \) |
| \( I_4 \) | = | \(88804\) | = | \( 2^{2} \cdot 149^{2} \) |
| \( I_6 \) | = | \(1906280\) | = | \( 2^{3} \cdot 5 \cdot 47657 \) |
| \( I_{10} \) | = | \(-877658112\) | = | \( -1 \cdot 2^{20} \cdot 3^{3} \cdot 31 \) |
| \( J_2 \) | = | \(13\) | = | \( 13 \) |
| \( J_4 \) | = | \(-918\) | = | \( -1 \cdot 2 \cdot 3^{3} \cdot 17 \) |
| \( J_6 \) | = | \(36\) | = | \( 2^{2} \cdot 3^{2} \) |
| \( J_8 \) | = | \(-210564\) | = | \( -1 \cdot 2^{2} \cdot 3^{2} \cdot 5849 \) |
| \( J_{10} \) | = | \(-214272\) | = | \( -1 \cdot 2^{8} \cdot 3^{3} \cdot 31 \) |
| \( g_1 \) | = | \(-371293/214272\) | ||
| \( g_2 \) | = | \(37349/3968\) | ||
| \( g_3 \) | = | \(-169/5952\) |
Automorphism group
|
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X)\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) | |
|
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) | |
Rational points
This curve is locally solvable everywhere.
All rational points: (-1 : -1 : 1), (-1 : 1 : 1), (0 : -1 : 1), (0 : 0 : 1), (1 : -3 : 1), (1 : -1 : 0), (1 : 0 : 0), (1 : 1 : 1)
Number of rational Weierstrass points: \(0\)
Invariants of the Jacobian:
Analytic rank: \(0\)
2-Selmer rank: \(0\)
Order of Ш*: square
Regulator: 1.0
Real period: 16.984099017808964344158872457
Tamagawa numbers: 13 (p = 2), 3 (p = 3), 1 (p = 31)
Torsion: \(\Z/{39}\Z\)
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition
Simple over \(\overline{\Q}\)
Endomorphisms
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
Additional information
This example of a curve of genus 2 whose Jacobian has a rational 39-torsion point was discovered by Noam Elkies (see this page).