Minimal equation
Minimal equation
Simplified equation
$y^2 + xy = x^5 + 6x^4 - 32x^2 + x$ | (homogenize, simplify) |
$y^2 + xz^2y = x^5z + 6x^4z^2 - 32x^2z^4 + xz^5$ | (dehomogenize, simplify) |
$y^2 = 4x^5 + 24x^4 - 127x^2 + 4x$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(1147\) | \(=\) | \( 31 \cdot 37 \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(35557\) | \(=\) | \( 31^{2} \cdot 37 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(12352\) | \(=\) | \( 2^{6} \cdot 193 \) |
\( I_4 \) | \(=\) | \(2309104\) | \(=\) | \( 2^{4} \cdot 7 \cdot 53 \cdot 389 \) |
\( I_6 \) | \(=\) | \(8338761079\) | \(=\) | \( 11 \cdot 9239 \cdot 82051 \) |
\( I_{10} \) | \(=\) | \(142228\) | \(=\) | \( 2^{2} \cdot 31^{2} \cdot 37 \) |
\( J_2 \) | \(=\) | \(6176\) | \(=\) | \( 2^{5} \cdot 193 \) |
\( J_4 \) | \(=\) | \(1204440\) | \(=\) | \( 2^{3} \cdot 3 \cdot 5 \cdot 10037 \) |
\( J_6 \) | \(=\) | \(279006977\) | \(=\) | \( 279006977 \) |
\( J_8 \) | \(=\) | \(68117844088\) | \(=\) | \( 2^{3} \cdot 7 \cdot 1216390073 \) |
\( J_{10} \) | \(=\) | \(35557\) | \(=\) | \( 31^{2} \cdot 37 \) |
\( g_1 \) | \(=\) | \(8985379753611493376/35557\) | ||
\( g_2 \) | \(=\) | \(283731159059005440/35557\) | ||
\( g_3 \) | \(=\) | \(10642156427543552/35557\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-4 : 2 : 1)\)
Number of rational Weierstrass points: \(3\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((-4 : 2 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x + 4z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-xz^2\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((-4 : 2 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x + 4z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-xz^2\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2\) | \(0\) | \(2\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x (x + 4z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-xz^2\) | \(0\) | \(2\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 1 \) |
Real period: | \( 2.864642 \) |
Tamagawa product: | \( 2 \) |
Torsion order: | \( 4 \) |
Leading coefficient: | \( 0.358080 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(31\) | \(1\) | \(2\) | \(2\) | \(1\) | \(( 1 + T )( 1 + 31 T^{2} )\) | yes | |
\(37\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 - 6 T + 37 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.120.3 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).