Properties

Label 1104.b.141312.1
Conductor $1104$
Discriminant $-141312$
Mordell-Weil group \(\Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more

Show commands: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x)y = -x^6 - 3x^4 + 29x^2 - 46$ (homogenize, simplify)
$y^2 + (x^3 + xz^2)y = -x^6 - 3x^4z^2 + 29x^2z^4 - 46z^6$ (dehomogenize, simplify)
$y^2 = -3x^6 - 10x^4 + 117x^2 - 184$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-46, 0, 29, 0, -3, 0, -1]), R([0, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-46, 0, 29, 0, -3, 0, -1], R![0, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([-184, 0, 117, 0, -10, 0, -3]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1104\) \(=\) \( 2^{4} \cdot 3 \cdot 23 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-141312\) \(=\) \( - 2^{11} \cdot 3 \cdot 23 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(14220\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 79 \)
\( I_4 \)  \(=\) \(9418737\) \(=\)  \( 3 \cdot 19 \cdot 149 \cdot 1109 \)
\( I_6 \)  \(=\) \(54280328031\) \(=\)  \( 3^{2} \cdot 503 \cdot 11990353 \)
\( I_{10} \)  \(=\) \(17664\) \(=\)  \( 2^{8} \cdot 3 \cdot 23 \)
\( J_2 \)  \(=\) \(14220\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 79 \)
\( J_4 \)  \(=\) \(2146192\) \(=\)  \( 2^{4} \cdot 31 \cdot 4327 \)
\( J_6 \)  \(=\) \(-16790479872\) \(=\)  \( - 2^{10} \cdot 3 \cdot 23 \cdot 71 \cdot 3347 \)
\( J_8 \)  \(=\) \(-60841690970176\) \(=\)  \( - 2^{6} \cdot 950651421409 \)
\( J_{10} \)  \(=\) \(141312\) \(=\)  \( 2^{11} \cdot 3 \cdot 23 \)
\( g_1 \)  \(=\) \(189267815942240625/46\)
\( g_2 \)  \(=\) \(2008843709918625/46\)
\( g_3 \)  \(=\) \(-24026098775400\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\Q_{2}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 8z^2\) \(=\) \(0,\) \(6y\) \(=\) \(-11xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 8z^2\) \(=\) \(0,\) \(6y\) \(=\) \(-11xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 8z^2\) \(=\) \(0,\) \(6y\) \(=\) \(x^3 - 21xz^2\) \(0\) \(2\)

2-torsion field: 8.4.2808152064.3

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 0.712625 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.356312 \)
Analytic order of Ш: \( 2 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(11\) \(1\) \(1 + T\)
\(3\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 3 T^{2} )\)
\(23\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 8 T + 23 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 46.a
  Elliptic curve isogeny class 24.a

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).