Learn more

Refine search


Results (31 matches)

  Download to        
Label Polynomial Discriminant Galois group Class group
43.1.171...443.1 x43 - x - 1 \( -\,109\cdot 809\cdot 397519523\cdot 490494801020731074863763714627948664201245545640512874061 \) $S_{43}$ (as 43T10) n/a
43.1.174...571.1 x43 + x - 1 \( -\,59\cdot 397\cdot 877\cdot 935899\cdot 2402649604770175349\cdot 378726079619435938610415929241631681351 \) $S_{43}$ (as 43T10) n/a
43.1.736...104.1 x43 - 4x - 4 \( -\,2^{42}\cdot 13\cdot 10239413\cdot 21464295562499\cdot 7440631653201968227\cdot 787580389820760746433715250923 \) $S_{43}$ (as 43T10) n/a
43.1.749...416.1 x43 - 2x - 2 \( -\,2^{42}\cdot 5577217\cdot 417006008813\cdot 34910848872522797\cdot 201068225194855523\cdot 1043987668577822729 \) $S_{43}$ (as 43T10) n/a
43.1.762...664.1 x43 - x - 2 \( -\,2^{43}\cdot 20380951\cdot 61480213\cdot 6920759952665299941538917396384169453478934159485941391 \) $S_{43}$ (as 43T10) n/a
43.1.762...487.1 x43 - x - 4 \( -\,229\cdot 293\cdot 4986887\cdot 566527637659\cdot 4239521573605607851\cdot 94914557329966604524084292149520799491137 \) $S_{43}$ (as 43T10) n/a
43.1.762...728.1 x43 - 2 \( -\,2^{42}\cdot 43^{43} \) $F_{43}$ (as 43T8) n/a
43.1.775...040.1 x43 + 2x - 2 \( -\,2^{42}\cdot 5\cdot 19\cdot 4987\cdot 11154877\cdot 914818621983827673311\cdot 3649515064680458585719692338597379997 \) $S_{43}$ (as 43T10) n/a
43.1.789...352.1 x43 + 4x - 4 \( -\,2^{42}\cdot 90073\cdot 2923961\cdot 68133429255140007202167625043712385709578872658361664978371 \) $S_{43}$ (as 43T10) n/a
43.3.492...621.1 x43 - 3x - 1 \( 193\cdot 255344695703200514510410356077083381032494299169685309677799453044343141404540738896397 \) $S_{43}$ (as 43T10) n/a
43.1.492...856.1 x43 + 3x - 2 \( -\,2^{43}\cdot 83\cdot 67502042791558118041804533258686204716076628322729472986933623501167834329 \) $S_{43}$ (as 43T10) n/a
43.1.189...651.1 x43 - 2x - 3 \( -\,3^{42}\cdot 139\cdot 124775347877419985548920353165571925958504525515910258911325684164601 \) $S_{43}$ (as 43T10) n/a
43.1.189...899.1 x43 - x - 3 \( -\,3^{43}\cdot 3929\cdot 27164077\cdot 1696291894163\cdot 4471934430678427\cdot 7140840614667743763301231198589 \) $S_{43}$ (as 43T10) n/a
43.1.189...963.1 x43 - 3 \( -\,3^{42}\cdot 43^{43} \) $F_{43}$ (as 43T8) n/a
43.1.194...091.1 x43 + 3x - 3 \( -\,3^{42}\cdot 11\cdot 4458821\cdot 2188196233\cdot 250952988948637\cdot 660672576607742254821201853013034985249 \) $S_{43}$ (as 43T10) n/a
43.1.335...704.1 x43 - 2x - 4 \( -\,2^{82}\cdot 17\cdot 911\cdot 1321\cdot 196825567\cdot 172286779949557395632536883985559201167052023742651489 \) $S_{43}$ (as 43T10) n/a
43.43.995...529.1 x43 - x42 - 84x41 + 79x40 + 3160x39 - 2786x38 - 70521x37 + 58076x36 + 1042773x35 - 798942x34 - 10810701x33 + 7671648x32 + 81126975x31 - 53056499x30 - 448758019x29 + 268953093x28 + 1846875875x27 - 1007873658x26 - 5671315301x25 + 2797394685x24 + 12962901258x23 - 5730420663x22 - 21895326590x21 + 8590544711x20 + 27001558938x19 - 9297003415x18 - 23896748020x17 + 7121607714x16 + 14834334408x15 - 3755010451x14 - 6269987218x13 + 1310830451x12 + 1732796449x11 - 287529242x10 - 294221159x9 + 37041429x8 + 27505221x7 - 2599666x6 - 1134285x5 + 90620x4 + 12893x3 - 370x2 - 54x - 1 \( 173^{42} \) $C_{43}$ (as 43T1) trivial (GRH)
43.1.116...403.1 x43 + 4x - 1 \( -\,181\cdot 155556871099633\cdot 21154104412279303\cdot 19502370656284022684705331520651631010500317670728311348739537 \) $S_{43}$ (as 43T10) n/a
43.1.116...624.1 x43 + 4x - 2 \( -\,2^{42}\cdot 13\cdot 53\cdot 359\cdot 379\cdot 397\cdot 15583\cdot 15667\cdot 16763\cdot 1652591\cdot 7443949\cdot 81974567114861\cdot 17195311805158423964285480495891 \) $S_{43}$ (as 43T10) n/a
43.1.116...859.1 x43 + 4x - 3 \( -\,3^{42}\cdot 17\cdot 251\cdot 24883154146172620815006293556540010583439231599502655506743920009280153 \) $S_{43}$ (as 43T10) n/a
43.1.335...584.1 x43 - 3x - 4 \( -\,2^{42}\cdot 5736251\cdot 13297659175117020385300439521039825046372945434356686517822982914329253832871 \) $S_{43}$ (as 43T10) n/a
43.1.426...432.1 x43 + 5x - 2 \( -\,2^{43}\cdot 4850992221948391221116864599701308523965647838401979155037948241214590584096052462329 \) $S_{43}$ (as 43T10) n/a
43.3.170...493.1 x43 - 5x - 1 \( 67\cdot 2547449482642716810547874063290873780104753209127002162928178624502864738223700120103316907477679 \) $S_{43}$ (as 43T10) n/a
43.1.377...875.1 x43 - 5x - 5 \( -\,5^{42}\cdot 1201\cdot 3109\cdot 627374521\cdot 7083328981731612358415823717337673911296516278980882783 \) $S_{43}$ (as 43T10) n/a
43.1.394...811.1 x43 - x - 5 \( -\,4378013\cdot 253946916604529\cdot 37511360891773121\cdot 94558584147022639554815783215214951921556301363567987461405383 \) $S_{43}$ (as 43T10) n/a
43.1.394...875.1 x43 - 5 \( -\,5^{42}\cdot 43^{43} \) $F_{43}$ (as 43T8) n/a
43.1.394...003.1 x43 + 3x - 5 \( -\,4787\cdot 56783432887\cdot 65016935311\cdot 223137316352143056032093232478629204773290672599490333442273344596696250817 \) $S_{43}$ (as 43T10) n/a
43.1.411...875.1 x43 + 5x - 5 \( -\,5^{42}\cdot 68281\cdot 264999458923518261034367410401624235839813453110759740473297621067 \) $S_{43}$ (as 43T10) n/a
43.43.444...961.1 x43 - x42 - 210x41 + 177x40 + 19424x39 - 12392x38 - 1053196x37 + 410572x36 + 37567316x35 - 4029555x34 - 936601673x33 - 185951871x32 + 16894280750x31 + 8734312688x30 - 224649876009x29 - 189102381409x28 + 2218265633870x27 + 2604819705111x26 - 16218499586789x25 - 24791417254787x24 + 86521587673786x23 + 168116844068603x22 - 325504806681996x21 - 819692515707425x20 + 795734675389219x19 + 2859558999201013x18 - 937302717934781x17 - 7011360351157045x16 - 902655412698460x15 + 11681897146129224x14 + 5604720542659268x13 - 12486138055465655x12 - 9886946345787043x11 + 7728522779787490x10 + 9075115953805640x9 - 2183897418754987x8 - 4579013283800046x7 - 40649514655288x6 + 1249295360564226x5 + 160575454035341x4 - 166814479770181x3 - 29312399288701x2 + 7715035819499x + 1403424452501 \( 431^{42} \) $C_{43}$ (as 43T1) n/a
43.43.101...009.1 x43 - x42 - 462x41 + 301x40 + 94630x39 - 49892x38 - 11463758x37 + 6368083x36 + 921810336x35 - 636827636x34 - 52222121579x33 + 47086072273x32 + 2155113502777x31 - 2510570612339x30 - 65969924993323x29 + 96629348183472x28 + 1509193690295722x27 - 2705517116526302x26 - 25775660913572833x25 + 55430418074111539x24 + 325598895562519548x23 - 832294062829303477x22 - 2983438147701667253x21 + 9129779342869086290x20 + 19125104314160845818x19 - 72594260758345520281x18 - 79441906767691419891x17 + 413102772817597404709x16 + 166866840849449475306x15 - 1650628224018564426381x14 + 139804498689687778120x13 + 4502348802434562518439x12 - 1981830512581480780535x11 - 8037383143222291539220x10 + 5701308150866478483031x9 + 8799946070456643867879x8 - 8188607772821299311768x7 - 5304980067316890480275x6 + 6100770874409784770241x5 + 1408273844297690430983x4 - 2063406363097082700573x3 - 90731765675438007935x2 + 193966087122261586736x + 18221685305593614631 \( 947^{42} \) $C_{43}$ (as 43T1) n/a
43.43.162...801.1 x43 - 903x41 - 645x40 + 358276x39 + 487362x38 - 82668446x37 - 161379172x36 + 12386889944x35 + 31035129471x34 - 1275092913940x33 - 3868686195114x32 + 93052767268909x31 + 330473143424644x30 - 4897798025442393x29 - 19967338988758228x28 + 187329847291648022x27 + 869728040966016241x26 - 5201925841676982029x25 - 27621776964130665961x24 + 103748981858304966660x23 + 643326429466437698421x22 - 1445787294046167541816x21 - 10999588529245966977339x20 + 13140703542377826450494x19 + 137573117593988043652238x18 - 60838518194479293931722x17 - 1247516677692517201034941x16 - 134666416459554320685647x15 + 8070410654031859605939559x14 + 4203376282667672263555078x13 - 36228120784944419229616219x12 - 30515963297503545387850753x11 + 107534691527795878017440861x10 + 119306453339061961678830425x9 - 192818992256047972290970619x8 - 263326021640166500214931210x7 + 170563929616560831037152772x6 + 294222510747058121054570076x5 - 33622183448420036732904682x4 - 118832831442545361067982885x3 - 7933826886293481520543865x2 + 14571491290875996179048369x + 2572343484535669027372727 \( 43^{84} \) $C_{43}$ (as 43T1) n/a
  Download to