Normalized defining polynomial
\( x^{43} - x^{42} - 462 x^{41} + 301 x^{40} + 94630 x^{39} - 49892 x^{38} - 11463758 x^{37} + \cdots + 18\!\cdots\!31 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17}a^{15}-\frac{3}{17}a^{14}+\frac{3}{17}a^{13}-\frac{8}{17}a^{12}+\frac{6}{17}a^{11}-\frac{4}{17}a^{10}-\frac{7}{17}a^{9}-\frac{6}{17}a^{8}-\frac{8}{17}a^{7}-\frac{8}{17}a^{6}+\frac{4}{17}a^{5}+\frac{2}{17}a^{4}+\frac{4}{17}a^{3}-\frac{7}{17}a^{2}-\frac{3}{17}a$, $\frac{1}{17}a^{16}-\frac{6}{17}a^{14}+\frac{1}{17}a^{13}-\frac{1}{17}a^{12}-\frac{3}{17}a^{11}-\frac{2}{17}a^{10}+\frac{7}{17}a^{9}+\frac{8}{17}a^{8}+\frac{2}{17}a^{7}-\frac{3}{17}a^{6}-\frac{3}{17}a^{5}-\frac{7}{17}a^{4}+\frac{5}{17}a^{3}-\frac{7}{17}a^{2}+\frac{8}{17}a$, $\frac{1}{17}a^{17}-\frac{1}{17}a$, $\frac{1}{17}a^{18}-\frac{1}{17}a^{2}$, $\frac{1}{17}a^{19}-\frac{1}{17}a^{3}$, $\frac{1}{17}a^{20}-\frac{1}{17}a^{4}$, $\frac{1}{17}a^{21}-\frac{1}{17}a^{5}$, $\frac{1}{17}a^{22}-\frac{1}{17}a^{6}$, $\frac{1}{17}a^{23}-\frac{1}{17}a^{7}$, $\frac{1}{17}a^{24}-\frac{1}{17}a^{8}$, $\frac{1}{17}a^{25}-\frac{1}{17}a^{9}$, $\frac{1}{17}a^{26}-\frac{1}{17}a^{10}$, $\frac{1}{289}a^{27}-\frac{5}{289}a^{26}+\frac{6}{289}a^{25}-\frac{4}{289}a^{24}+\frac{4}{289}a^{23}+\frac{3}{289}a^{22}-\frac{4}{289}a^{21}-\frac{5}{289}a^{20}-\frac{1}{289}a^{19}-\frac{5}{289}a^{18}-\frac{2}{289}a^{17}+\frac{7}{289}a^{16}+\frac{8}{289}a^{15}+\frac{2}{289}a^{14}+\frac{133}{289}a^{13}-\frac{37}{289}a^{12}+\frac{60}{289}a^{11}-\frac{58}{289}a^{10}+\frac{72}{289}a^{9}+\frac{12}{289}a^{8}-\frac{71}{289}a^{7}+\frac{133}{289}a^{6}-\frac{87}{289}a^{5}+\frac{6}{289}a^{4}+\frac{6}{17}a^{3}+\frac{121}{289}a^{2}-\frac{3}{17}a$, $\frac{1}{289}a^{28}-\frac{2}{289}a^{26}-\frac{8}{289}a^{25}+\frac{1}{289}a^{24}+\frac{6}{289}a^{23}-\frac{6}{289}a^{22}-\frac{8}{289}a^{21}+\frac{8}{289}a^{20}+\frac{7}{289}a^{19}+\frac{7}{289}a^{18}-\frac{3}{289}a^{17}-\frac{8}{289}a^{16}+\frac{8}{289}a^{15}-\frac{27}{289}a^{14}-\frac{103}{289}a^{13}-\frac{91}{289}a^{12}-\frac{98}{289}a^{11}+\frac{3}{289}a^{10}-\frac{2}{289}a^{9}+\frac{57}{289}a^{8}-\frac{35}{289}a^{7}-\frac{8}{17}a^{6}-\frac{140}{289}a^{5}+\frac{98}{289}a^{4}-\frac{66}{289}a^{3}-\frac{41}{289}a^{2}+\frac{1}{17}a$, $\frac{1}{289}a^{29}-\frac{1}{289}a^{26}-\frac{4}{289}a^{25}-\frac{2}{289}a^{24}+\frac{2}{289}a^{23}-\frac{2}{289}a^{22}-\frac{3}{289}a^{20}+\frac{5}{289}a^{19}+\frac{4}{289}a^{18}+\frac{5}{289}a^{17}+\frac{5}{289}a^{16}+\frac{6}{289}a^{15}-\frac{48}{289}a^{14}-\frac{80}{289}a^{13}-\frac{2}{289}a^{12}-\frac{13}{289}a^{11}+\frac{120}{289}a^{10}-\frac{20}{289}a^{9}+\frac{40}{289}a^{8}+\frac{130}{289}a^{7}+\frac{41}{289}a^{6}+\frac{43}{289}a^{5}+\frac{99}{289}a^{4}-\frac{143}{289}a^{3}-\frac{47}{289}a^{2}-\frac{1}{17}a$, $\frac{1}{289}a^{30}+\frac{8}{289}a^{26}+\frac{4}{289}a^{25}-\frac{2}{289}a^{24}+\frac{2}{289}a^{23}+\frac{3}{289}a^{22}-\frac{7}{289}a^{21}+\frac{3}{289}a^{19}+\frac{3}{289}a^{17}-\frac{4}{289}a^{16}-\frac{6}{289}a^{15}-\frac{78}{289}a^{14}-\frac{73}{289}a^{13}-\frac{16}{289}a^{12}-\frac{143}{289}a^{11}+\frac{92}{289}a^{10}+\frac{44}{289}a^{9}+\frac{91}{289}a^{8}-\frac{47}{289}a^{7}-\frac{45}{289}a^{6}-\frac{90}{289}a^{5}+\frac{50}{289}a^{4}+\frac{106}{289}a^{3}-\frac{15}{289}a^{2}$, $\frac{1}{289}a^{31}-\frac{7}{289}a^{26}+\frac{1}{289}a^{25}+\frac{5}{289}a^{23}+\frac{3}{289}a^{22}-\frac{2}{289}a^{21}-\frac{8}{289}a^{20}+\frac{8}{289}a^{19}-\frac{8}{289}a^{18}-\frac{5}{289}a^{17}+\frac{6}{289}a^{16}-\frac{6}{289}a^{15}-\frac{38}{289}a^{14}-\frac{26}{289}a^{13}-\frac{8}{17}a^{12}-\frac{65}{289}a^{11}-\frac{121}{289}a^{10}+\frac{144}{289}a^{9}-\frac{92}{289}a^{8}+\frac{115}{289}a^{7}+\frac{121}{289}a^{6}-\frac{36}{289}a^{5}-\frac{95}{289}a^{4}+\frac{53}{289}a^{3}-\frac{33}{289}a^{2}-\frac{1}{17}a$, $\frac{1}{289}a^{32}+\frac{8}{289}a^{25}-\frac{6}{289}a^{24}-\frac{3}{289}a^{23}+\frac{2}{289}a^{22}-\frac{2}{289}a^{21}+\frac{7}{289}a^{20}+\frac{2}{289}a^{19}-\frac{6}{289}a^{18}-\frac{8}{289}a^{17}-\frac{8}{289}a^{16}+\frac{1}{289}a^{15}+\frac{56}{289}a^{14}+\frac{115}{289}a^{13}-\frac{137}{289}a^{12}+\frac{61}{289}a^{11}-\frac{126}{289}a^{10}-\frac{81}{289}a^{9}-\frac{124}{289}a^{8}-\frac{19}{289}a^{7}+\frac{45}{289}a^{6}-\frac{75}{289}a^{5}+\frac{95}{289}a^{4}+\frac{52}{289}a^{3}+\frac{116}{289}a^{2}-\frac{8}{17}a$, $\frac{1}{4913}a^{33}-\frac{3}{4913}a^{32}+\frac{6}{4913}a^{30}+\frac{3}{4913}a^{29}-\frac{8}{4913}a^{27}-\frac{43}{4913}a^{26}-\frac{134}{4913}a^{25}+\frac{29}{4913}a^{24}+\frac{14}{4913}a^{23}+\frac{14}{4913}a^{22}-\frac{14}{4913}a^{21}+\frac{80}{4913}a^{20}-\frac{56}{4913}a^{19}+\frac{45}{4913}a^{18}+\frac{14}{4913}a^{17}-\frac{23}{4913}a^{16}-\frac{97}{4913}a^{15}+\frac{2022}{4913}a^{14}+\frac{190}{4913}a^{13}+\frac{904}{4913}a^{12}+\frac{745}{4913}a^{11}-\frac{2288}{4913}a^{10}+\frac{988}{4913}a^{9}-\frac{556}{4913}a^{8}+\frac{472}{4913}a^{7}-\frac{1251}{4913}a^{6}+\frac{1455}{4913}a^{5}+\frac{860}{4913}a^{4}+\frac{694}{4913}a^{3}-\frac{128}{289}a^{2}-\frac{6}{17}a$, $\frac{1}{4913}a^{34}+\frac{8}{4913}a^{32}+\frac{6}{4913}a^{31}+\frac{4}{4913}a^{30}-\frac{8}{4913}a^{29}-\frac{8}{4913}a^{28}+\frac{1}{4913}a^{27}-\frac{144}{4913}a^{26}-\frac{118}{4913}a^{25}+\frac{84}{4913}a^{24}-\frac{80}{4913}a^{23}-\frac{40}{4913}a^{22}+\frac{140}{4913}a^{21}+\frac{14}{4913}a^{20}-\frac{4}{4913}a^{19}-\frac{72}{4913}a^{18}-\frac{100}{4913}a^{17}-\frac{132}{4913}a^{16}-\frac{20}{4913}a^{15}-\frac{88}{289}a^{14}-\frac{1977}{4913}a^{13}-\frac{1949}{4913}a^{12}-\frac{376}{4913}a^{11}-\frac{1405}{4913}a^{10}+\frac{317}{4913}a^{9}+\frac{1643}{4913}a^{8}+\frac{1984}{4913}a^{7}-\frac{2247}{4913}a^{6}-\frac{11}{4913}a^{5}+\frac{163}{4913}a^{4}+\frac{2286}{4913}a^{3}+\frac{74}{289}a^{2}-\frac{5}{17}a$, $\frac{1}{83521}a^{35}-\frac{6}{83521}a^{34}-\frac{8}{83521}a^{33}+\frac{91}{83521}a^{32}-\frac{117}{83521}a^{31}-\frac{26}{83521}a^{30}+\frac{111}{83521}a^{29}-\frac{138}{83521}a^{28}+\frac{114}{83521}a^{27}+\frac{1553}{83521}a^{26}-\frac{1161}{83521}a^{25}-\frac{2153}{83521}a^{24}-\frac{1467}{83521}a^{23}+\frac{1091}{83521}a^{22}-\frac{364}{83521}a^{21}-\frac{1759}{83521}a^{20}-\frac{1362}{83521}a^{19}-\frac{1442}{83521}a^{18}+\frac{2046}{83521}a^{17}+\frac{1140}{83521}a^{16}+\frac{1043}{83521}a^{15}-\frac{33513}{83521}a^{14}+\frac{14965}{83521}a^{13}-\frac{6121}{83521}a^{12}+\frac{7971}{83521}a^{11}-\frac{7192}{83521}a^{10}+\frac{4248}{83521}a^{9}+\frac{36841}{83521}a^{8}-\frac{2697}{83521}a^{7}-\frac{17309}{83521}a^{6}-\frac{29086}{83521}a^{5}-\frac{30744}{83521}a^{4}+\frac{1010}{4913}a^{3}+\frac{42}{289}a^{2}+\frac{5}{17}a$, $\frac{1}{83521}a^{36}+\frac{7}{83521}a^{34}-\frac{8}{83521}a^{33}+\frac{123}{83521}a^{32}-\frac{133}{83521}a^{31}+\frac{142}{83521}a^{30}-\frac{33}{83521}a^{29}+\frac{2}{4913}a^{28}+\frac{95}{83521}a^{27}-\frac{751}{83521}a^{26}+\frac{656}{83521}a^{25}-\frac{309}{83521}a^{24}-\frac{1523}{83521}a^{23}-\frac{1485}{83521}a^{22}-\frac{713}{83521}a^{21}-\frac{1410}{83521}a^{20}+\frac{263}{83521}a^{19}+\frac{1588}{83521}a^{18}+\frac{955}{83521}a^{17}+\frac{2035}{83521}a^{16}+\frac{81}{83521}a^{15}+\frac{31844}{83521}a^{14}+\frac{18525}{83521}a^{13}-\frac{24845}{83521}a^{12}+\frac{28547}{83521}a^{11}-\frac{3986}{83521}a^{10}+\frac{36778}{83521}a^{9}-\frac{18903}{83521}a^{8}+\frac{22524}{83521}a^{7}-\frac{81}{4913}a^{6}-\frac{274}{83521}a^{5}-\frac{8922}{83521}a^{4}+\frac{1911}{4913}a^{3}-\frac{77}{289}a^{2}-\frac{4}{17}a$, $\frac{1}{83521}a^{37}-\frac{8}{83521}a^{33}+\frac{97}{83521}a^{32}-\frac{110}{83521}a^{31}+\frac{47}{83521}a^{30}+\frac{124}{83521}a^{29}-\frac{112}{83521}a^{28}-\frac{87}{83521}a^{27}+\frac{121}{83521}a^{26}-\frac{1838}{83521}a^{25}+\frac{645}{83521}a^{24}-\frac{1229}{83521}a^{23}-\frac{1227}{83521}a^{22}-\frac{1871}{83521}a^{21}-\frac{1993}{83521}a^{20}+\frac{344}{83521}a^{19}-\frac{1854}{83521}a^{18}+\frac{1789}{83521}a^{17}-\frac{1133}{83521}a^{16}-\frac{1722}{83521}a^{15}+\frac{31929}{83521}a^{14}+\frac{7284}{83521}a^{13}+\frac{19765}{83521}a^{12}-\frac{20428}{83521}a^{11}+\frac{20006}{83521}a^{10}-\frac{6904}{83521}a^{9}-\frac{2004}{83521}a^{8}+\frac{35182}{83521}a^{7}+\frac{38184}{83521}a^{6}+\frac{4756}{83521}a^{5}+\frac{33070}{83521}a^{4}+\frac{1226}{4913}a^{3}-\frac{38}{289}a^{2}+\frac{1}{17}a$, $\frac{1}{83521}a^{38}-\frac{8}{83521}a^{34}-\frac{5}{83521}a^{33}-\frac{93}{83521}a^{32}+\frac{47}{83521}a^{31}+\frac{90}{83521}a^{30}-\frac{129}{83521}a^{29}-\frac{87}{83521}a^{28}+\frac{70}{83521}a^{27}+\frac{1392}{83521}a^{26}-\frac{1871}{83521}a^{25}-\frac{719}{83521}a^{24}+\frac{1391}{83521}a^{23}-\frac{409}{83521}a^{22}-\frac{565}{83521}a^{21}-\frac{1458}{83521}a^{20}+\frac{2413}{83521}a^{19}-\frac{489}{83521}a^{18}-\frac{249}{83521}a^{17}+\frac{913}{83521}a^{16}-\frac{1527}{83521}a^{15}-\frac{35097}{83521}a^{14}+\frac{22349}{83521}a^{13}-\frac{31138}{83521}a^{12}-\frac{15524}{83521}a^{11}+\frac{37466}{83521}a^{10}-\frac{4231}{83521}a^{9}+\frac{9529}{83521}a^{8}+\frac{13449}{83521}a^{7}-\frac{5206}{83521}a^{6}+\frac{40431}{83521}a^{5}+\frac{996}{4913}a^{4}-\frac{1342}{4913}a^{3}+\frac{93}{289}a^{2}-\frac{3}{17}a$, $\frac{1}{1419857}a^{39}+\frac{8}{1419857}a^{38}+\frac{8}{1419857}a^{37}-\frac{3}{1419857}a^{36}-\frac{2}{1419857}a^{35}+\frac{27}{1419857}a^{34}-\frac{8}{83521}a^{33}+\frac{1225}{1419857}a^{32}-\frac{2111}{1419857}a^{31}-\frac{1383}{1419857}a^{30}-\frac{1198}{1419857}a^{29}+\frac{659}{1419857}a^{28}-\frac{2051}{1419857}a^{27}-\frac{22379}{1419857}a^{26}-\frac{5189}{1419857}a^{25}+\frac{18864}{1419857}a^{24}-\frac{10350}{1419857}a^{23}+\frac{2138}{83521}a^{22}-\frac{37175}{1419857}a^{21}-\frac{39339}{1419857}a^{20}+\frac{28909}{1419857}a^{19}-\frac{32375}{1419857}a^{18}+\frac{604}{83521}a^{17}-\frac{4762}{1419857}a^{16}+\frac{37661}{1419857}a^{15}-\frac{582043}{1419857}a^{14}+\frac{48891}{1419857}a^{13}+\frac{414526}{1419857}a^{12}-\frac{327830}{1419857}a^{11}-\frac{467435}{1419857}a^{10}-\frac{152140}{1419857}a^{9}-\frac{140967}{1419857}a^{8}+\frac{499549}{1419857}a^{7}+\frac{1212}{1419857}a^{6}-\frac{218328}{1419857}a^{5}+\frac{1169}{83521}a^{4}+\frac{345}{4913}a^{3}+\frac{71}{289}a^{2}-\frac{3}{17}a$, $\frac{1}{10451567377}a^{40}+\frac{2776}{10451567377}a^{39}+\frac{22543}{10451567377}a^{38}-\frac{44499}{10451567377}a^{37}+\frac{25252}{10451567377}a^{36}+\frac{5626}{10451567377}a^{35}-\frac{1022495}{10451567377}a^{34}-\frac{573545}{10451567377}a^{33}-\frac{13082934}{10451567377}a^{32}+\frac{1337512}{10451567377}a^{31}-\frac{9357028}{10451567377}a^{30}+\frac{16680046}{10451567377}a^{29}-\frac{10412431}{10451567377}a^{28}-\frac{5347426}{10451567377}a^{27}+\frac{14258277}{614798081}a^{26}-\frac{133833837}{10451567377}a^{25}+\frac{144594932}{10451567377}a^{24}+\frac{171036855}{10451567377}a^{23}+\frac{237977156}{10451567377}a^{22}+\frac{222834236}{10451567377}a^{21}-\frac{28457121}{10451567377}a^{20}+\frac{17678833}{614798081}a^{19}+\frac{154833165}{10451567377}a^{18}+\frac{295515}{24137569}a^{17}-\frac{139525091}{10451567377}a^{16}-\frac{174510540}{10451567377}a^{15}+\frac{592487900}{10451567377}a^{14}-\frac{854303515}{10451567377}a^{13}-\frac{3916260790}{10451567377}a^{12}+\frac{3838615711}{10451567377}a^{11}+\frac{4239005660}{10451567377}a^{10}-\frac{4389694966}{10451567377}a^{9}+\frac{3122528903}{10451567377}a^{8}+\frac{1211116747}{10451567377}a^{7}-\frac{2968261569}{10451567377}a^{6}-\frac{1968407518}{10451567377}a^{5}-\frac{54508598}{614798081}a^{4}+\frac{13089726}{36164593}a^{3}+\frac{553258}{2127329}a^{2}+\frac{17951}{125137}a-\frac{2019}{7361}$, $\frac{1}{8037255312913}a^{41}+\frac{131}{8037255312913}a^{40}+\frac{2234601}{8037255312913}a^{39}+\frac{19268630}{8037255312913}a^{38}+\frac{9084108}{8037255312913}a^{37}+\frac{18550159}{8037255312913}a^{36}+\frac{9035803}{8037255312913}a^{35}-\frac{668450171}{8037255312913}a^{34}-\frac{583091295}{8037255312913}a^{33}-\frac{4275324888}{8037255312913}a^{32}+\frac{3801211285}{8037255312913}a^{31}-\frac{8489403640}{8037255312913}a^{30}+\frac{13865130084}{8037255312913}a^{29}+\frac{13144225494}{8037255312913}a^{28}+\frac{12550337137}{8037255312913}a^{27}+\frac{51086660226}{8037255312913}a^{26}-\frac{43089213885}{8037255312913}a^{25}-\frac{206145237835}{8037255312913}a^{24}-\frac{92062393087}{8037255312913}a^{23}+\frac{199631690912}{8037255312913}a^{22}+\frac{124536435192}{8037255312913}a^{21}+\frac{220590600066}{8037255312913}a^{20}-\frac{23718093656}{8037255312913}a^{19}+\frac{110537912134}{8037255312913}a^{18}+\frac{8502823664}{8037255312913}a^{17}+\frac{84175459014}{8037255312913}a^{16}-\frac{5715863722}{8037255312913}a^{15}-\frac{569632670653}{8037255312913}a^{14}+\frac{3350489174460}{8037255312913}a^{13}-\frac{1059564394239}{8037255312913}a^{12}-\frac{2056003284537}{8037255312913}a^{11}+\frac{671506382869}{8037255312913}a^{10}-\frac{3661347524818}{8037255312913}a^{9}-\frac{3498916227405}{8037255312913}a^{8}+\frac{3675928987953}{8037255312913}a^{7}-\frac{3023125607470}{8037255312913}a^{6}-\frac{3617168699574}{8037255312913}a^{5}+\frac{212689746353}{472779724289}a^{4}-\frac{12307433659}{27810572017}a^{3}-\frac{221901950}{1635916001}a^{2}-\frac{32858967}{96230353}a-\frac{224661}{5660609}$, $\frac{1}{19\!\cdots\!89}a^{42}-\frac{51\!\cdots\!40}{19\!\cdots\!89}a^{41}-\frac{96\!\cdots\!74}{19\!\cdots\!89}a^{40}-\frac{17\!\cdots\!36}{19\!\cdots\!89}a^{39}-\frac{86\!\cdots\!17}{19\!\cdots\!89}a^{38}-\frac{96\!\cdots\!68}{19\!\cdots\!89}a^{37}+\frac{63\!\cdots\!26}{19\!\cdots\!89}a^{36}-\frac{63\!\cdots\!68}{19\!\cdots\!89}a^{35}+\frac{17\!\cdots\!16}{19\!\cdots\!89}a^{34}+\frac{55\!\cdots\!24}{19\!\cdots\!89}a^{33}+\frac{33\!\cdots\!14}{19\!\cdots\!89}a^{32}+\frac{30\!\cdots\!65}{19\!\cdots\!89}a^{31}+\frac{33\!\cdots\!92}{19\!\cdots\!89}a^{30}-\frac{21\!\cdots\!40}{19\!\cdots\!89}a^{29}-\frac{18\!\cdots\!04}{19\!\cdots\!89}a^{28}+\frac{21\!\cdots\!32}{19\!\cdots\!89}a^{27}+\frac{30\!\cdots\!26}{19\!\cdots\!89}a^{26}-\frac{34\!\cdots\!51}{19\!\cdots\!89}a^{25}+\frac{31\!\cdots\!95}{19\!\cdots\!89}a^{24}-\frac{32\!\cdots\!54}{19\!\cdots\!89}a^{23}-\frac{18\!\cdots\!26}{11\!\cdots\!17}a^{22}+\frac{20\!\cdots\!57}{19\!\cdots\!89}a^{21}-\frac{44\!\cdots\!18}{19\!\cdots\!89}a^{20}+\frac{54\!\cdots\!59}{19\!\cdots\!89}a^{19}-\frac{35\!\cdots\!03}{19\!\cdots\!89}a^{18}-\frac{28\!\cdots\!53}{11\!\cdots\!17}a^{17}-\frac{87\!\cdots\!74}{19\!\cdots\!89}a^{16}+\frac{18\!\cdots\!46}{19\!\cdots\!89}a^{15}+\frac{43\!\cdots\!78}{19\!\cdots\!89}a^{14}-\frac{26\!\cdots\!18}{19\!\cdots\!89}a^{13}+\frac{12\!\cdots\!08}{19\!\cdots\!89}a^{12}-\frac{89\!\cdots\!44}{19\!\cdots\!89}a^{11}+\frac{47\!\cdots\!12}{19\!\cdots\!89}a^{10}+\frac{13\!\cdots\!14}{19\!\cdots\!89}a^{9}+\frac{93\!\cdots\!65}{19\!\cdots\!89}a^{8}+\frac{94\!\cdots\!16}{19\!\cdots\!89}a^{7}-\frac{49\!\cdots\!09}{19\!\cdots\!89}a^{6}-\frac{16\!\cdots\!26}{11\!\cdots\!17}a^{5}+\frac{13\!\cdots\!82}{39\!\cdots\!53}a^{4}-\frac{38\!\cdots\!12}{39\!\cdots\!53}a^{3}-\frac{25\!\cdots\!09}{23\!\cdots\!09}a^{2}+\frac{36\!\cdots\!89}{13\!\cdots\!77}a-\frac{84\!\cdots\!29}{80\!\cdots\!81}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $17$ |
Class group and class number
not computed
Unit group
Rank: | $42$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{43}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{101554487341926844216969846221080781237895685553160643066505060271306560421136844000042773102578137815468250505123323781432009}}\cr\mathstrut & \text{
Galois group
A cyclic group of order 43 |
The 43 conjugacy class representatives for $C_{43}$ |
Character table for $C_{43}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | ${\href{/padicField/17.1.0.1}{1} }^{43}$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(947\) | Deg $43$ | $43$ | $1$ | $42$ |