Properties

Label 43.43.101...009.1
Degree $43$
Signature $[43, 0]$
Discriminant $1.016\times 10^{125}$
Root discriminant \(807.48\)
Ramified prime $947$
Class number not computed
Class group not computed
Galois group $C_{43}$ (as 43T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^43 - x^42 - 462*x^41 + 301*x^40 + 94630*x^39 - 49892*x^38 - 11463758*x^37 + 6368083*x^36 + 921810336*x^35 - 636827636*x^34 - 52222121579*x^33 + 47086072273*x^32 + 2155113502777*x^31 - 2510570612339*x^30 - 65969924993323*x^29 + 96629348183472*x^28 + 1509193690295722*x^27 - 2705517116526302*x^26 - 25775660913572833*x^25 + 55430418074111539*x^24 + 325598895562519548*x^23 - 832294062829303477*x^22 - 2983438147701667253*x^21 + 9129779342869086290*x^20 + 19125104314160845818*x^19 - 72594260758345520281*x^18 - 79441906767691419891*x^17 + 413102772817597404709*x^16 + 166866840849449475306*x^15 - 1650628224018564426381*x^14 + 139804498689687778120*x^13 + 4502348802434562518439*x^12 - 1981830512581480780535*x^11 - 8037383143222291539220*x^10 + 5701308150866478483031*x^9 + 8799946070456643867879*x^8 - 8188607772821299311768*x^7 - 5304980067316890480275*x^6 + 6100770874409784770241*x^5 + 1408273844297690430983*x^4 - 2063406363097082700573*x^3 - 90731765675438007935*x^2 + 193966087122261586736*x + 18221685305593614631)
 
gp: K = bnfinit(y^43 - y^42 - 462*y^41 + 301*y^40 + 94630*y^39 - 49892*y^38 - 11463758*y^37 + 6368083*y^36 + 921810336*y^35 - 636827636*y^34 - 52222121579*y^33 + 47086072273*y^32 + 2155113502777*y^31 - 2510570612339*y^30 - 65969924993323*y^29 + 96629348183472*y^28 + 1509193690295722*y^27 - 2705517116526302*y^26 - 25775660913572833*y^25 + 55430418074111539*y^24 + 325598895562519548*y^23 - 832294062829303477*y^22 - 2983438147701667253*y^21 + 9129779342869086290*y^20 + 19125104314160845818*y^19 - 72594260758345520281*y^18 - 79441906767691419891*y^17 + 413102772817597404709*y^16 + 166866840849449475306*y^15 - 1650628224018564426381*y^14 + 139804498689687778120*y^13 + 4502348802434562518439*y^12 - 1981830512581480780535*y^11 - 8037383143222291539220*y^10 + 5701308150866478483031*y^9 + 8799946070456643867879*y^8 - 8188607772821299311768*y^7 - 5304980067316890480275*y^6 + 6100770874409784770241*y^5 + 1408273844297690430983*y^4 - 2063406363097082700573*y^3 - 90731765675438007935*y^2 + 193966087122261586736*y + 18221685305593614631, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^43 - x^42 - 462*x^41 + 301*x^40 + 94630*x^39 - 49892*x^38 - 11463758*x^37 + 6368083*x^36 + 921810336*x^35 - 636827636*x^34 - 52222121579*x^33 + 47086072273*x^32 + 2155113502777*x^31 - 2510570612339*x^30 - 65969924993323*x^29 + 96629348183472*x^28 + 1509193690295722*x^27 - 2705517116526302*x^26 - 25775660913572833*x^25 + 55430418074111539*x^24 + 325598895562519548*x^23 - 832294062829303477*x^22 - 2983438147701667253*x^21 + 9129779342869086290*x^20 + 19125104314160845818*x^19 - 72594260758345520281*x^18 - 79441906767691419891*x^17 + 413102772817597404709*x^16 + 166866840849449475306*x^15 - 1650628224018564426381*x^14 + 139804498689687778120*x^13 + 4502348802434562518439*x^12 - 1981830512581480780535*x^11 - 8037383143222291539220*x^10 + 5701308150866478483031*x^9 + 8799946070456643867879*x^8 - 8188607772821299311768*x^7 - 5304980067316890480275*x^6 + 6100770874409784770241*x^5 + 1408273844297690430983*x^4 - 2063406363097082700573*x^3 - 90731765675438007935*x^2 + 193966087122261586736*x + 18221685305593614631);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^43 - x^42 - 462*x^41 + 301*x^40 + 94630*x^39 - 49892*x^38 - 11463758*x^37 + 6368083*x^36 + 921810336*x^35 - 636827636*x^34 - 52222121579*x^33 + 47086072273*x^32 + 2155113502777*x^31 - 2510570612339*x^30 - 65969924993323*x^29 + 96629348183472*x^28 + 1509193690295722*x^27 - 2705517116526302*x^26 - 25775660913572833*x^25 + 55430418074111539*x^24 + 325598895562519548*x^23 - 832294062829303477*x^22 - 2983438147701667253*x^21 + 9129779342869086290*x^20 + 19125104314160845818*x^19 - 72594260758345520281*x^18 - 79441906767691419891*x^17 + 413102772817597404709*x^16 + 166866840849449475306*x^15 - 1650628224018564426381*x^14 + 139804498689687778120*x^13 + 4502348802434562518439*x^12 - 1981830512581480780535*x^11 - 8037383143222291539220*x^10 + 5701308150866478483031*x^9 + 8799946070456643867879*x^8 - 8188607772821299311768*x^7 - 5304980067316890480275*x^6 + 6100770874409784770241*x^5 + 1408273844297690430983*x^4 - 2063406363097082700573*x^3 - 90731765675438007935*x^2 + 193966087122261586736*x + 18221685305593614631)
 

\( x^{43} - x^{42} - 462 x^{41} + 301 x^{40} + 94630 x^{39} - 49892 x^{38} - 11463758 x^{37} + \cdots + 18\!\cdots\!31 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $43$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[43, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(101\!\cdots\!009\) \(\medspace = 947^{42}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(807.48\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $947^{42/43}\approx 807.4814191627743$
Ramified primes:   \(947\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $43$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(947\)
Dirichlet character group:    $\lbrace$$\chi_{947}(1,·)$, $\chi_{947}(131,·)$, $\chi_{947}(900,·)$, $\chi_{947}(902,·)$, $\chi_{947}(904,·)$, $\chi_{947}(523,·)$, $\chi_{947}(140,·)$, $\chi_{947}(142,·)$, $\chi_{947}(400,·)$, $\chi_{947}(914,·)$, $\chi_{947}(660,·)$, $\chi_{947}(277,·)$, $\chi_{947}(22,·)$, $\chi_{947}(793,·)$, $\chi_{947}(538,·)$, $\chi_{947}(283,·)$, $\chi_{947}(412,·)$, $\chi_{947}(541,·)$, $\chi_{947}(30,·)$, $\chi_{947}(927,·)$, $\chi_{947}(544,·)$, $\chi_{947}(41,·)$, $\chi_{947}(940,·)$, $\chi_{947}(301,·)$, $\chi_{947}(49,·)$, $\chi_{947}(58,·)$, $\chi_{947}(315,·)$, $\chi_{947}(609,·)$, $\chi_{947}(329,·)$, $\chi_{947}(472,·)$, $\chi_{947}(347,·)$, $\chi_{947}(604,·)$, $\chi_{947}(221,·)$, $\chi_{947}(734,·)$, $\chi_{947}(737,·)$, $\chi_{947}(484,·)$, $\chi_{947}(231,·)$, $\chi_{947}(860,·)$, $\chi_{947}(239,·)$, $\chi_{947}(115,·)$, $\chi_{947}(507,·)$, $\chi_{947}(636,·)$, $\chi_{947}(127,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17}a^{15}-\frac{3}{17}a^{14}+\frac{3}{17}a^{13}-\frac{8}{17}a^{12}+\frac{6}{17}a^{11}-\frac{4}{17}a^{10}-\frac{7}{17}a^{9}-\frac{6}{17}a^{8}-\frac{8}{17}a^{7}-\frac{8}{17}a^{6}+\frac{4}{17}a^{5}+\frac{2}{17}a^{4}+\frac{4}{17}a^{3}-\frac{7}{17}a^{2}-\frac{3}{17}a$, $\frac{1}{17}a^{16}-\frac{6}{17}a^{14}+\frac{1}{17}a^{13}-\frac{1}{17}a^{12}-\frac{3}{17}a^{11}-\frac{2}{17}a^{10}+\frac{7}{17}a^{9}+\frac{8}{17}a^{8}+\frac{2}{17}a^{7}-\frac{3}{17}a^{6}-\frac{3}{17}a^{5}-\frac{7}{17}a^{4}+\frac{5}{17}a^{3}-\frac{7}{17}a^{2}+\frac{8}{17}a$, $\frac{1}{17}a^{17}-\frac{1}{17}a$, $\frac{1}{17}a^{18}-\frac{1}{17}a^{2}$, $\frac{1}{17}a^{19}-\frac{1}{17}a^{3}$, $\frac{1}{17}a^{20}-\frac{1}{17}a^{4}$, $\frac{1}{17}a^{21}-\frac{1}{17}a^{5}$, $\frac{1}{17}a^{22}-\frac{1}{17}a^{6}$, $\frac{1}{17}a^{23}-\frac{1}{17}a^{7}$, $\frac{1}{17}a^{24}-\frac{1}{17}a^{8}$, $\frac{1}{17}a^{25}-\frac{1}{17}a^{9}$, $\frac{1}{17}a^{26}-\frac{1}{17}a^{10}$, $\frac{1}{289}a^{27}-\frac{5}{289}a^{26}+\frac{6}{289}a^{25}-\frac{4}{289}a^{24}+\frac{4}{289}a^{23}+\frac{3}{289}a^{22}-\frac{4}{289}a^{21}-\frac{5}{289}a^{20}-\frac{1}{289}a^{19}-\frac{5}{289}a^{18}-\frac{2}{289}a^{17}+\frac{7}{289}a^{16}+\frac{8}{289}a^{15}+\frac{2}{289}a^{14}+\frac{133}{289}a^{13}-\frac{37}{289}a^{12}+\frac{60}{289}a^{11}-\frac{58}{289}a^{10}+\frac{72}{289}a^{9}+\frac{12}{289}a^{8}-\frac{71}{289}a^{7}+\frac{133}{289}a^{6}-\frac{87}{289}a^{5}+\frac{6}{289}a^{4}+\frac{6}{17}a^{3}+\frac{121}{289}a^{2}-\frac{3}{17}a$, $\frac{1}{289}a^{28}-\frac{2}{289}a^{26}-\frac{8}{289}a^{25}+\frac{1}{289}a^{24}+\frac{6}{289}a^{23}-\frac{6}{289}a^{22}-\frac{8}{289}a^{21}+\frac{8}{289}a^{20}+\frac{7}{289}a^{19}+\frac{7}{289}a^{18}-\frac{3}{289}a^{17}-\frac{8}{289}a^{16}+\frac{8}{289}a^{15}-\frac{27}{289}a^{14}-\frac{103}{289}a^{13}-\frac{91}{289}a^{12}-\frac{98}{289}a^{11}+\frac{3}{289}a^{10}-\frac{2}{289}a^{9}+\frac{57}{289}a^{8}-\frac{35}{289}a^{7}-\frac{8}{17}a^{6}-\frac{140}{289}a^{5}+\frac{98}{289}a^{4}-\frac{66}{289}a^{3}-\frac{41}{289}a^{2}+\frac{1}{17}a$, $\frac{1}{289}a^{29}-\frac{1}{289}a^{26}-\frac{4}{289}a^{25}-\frac{2}{289}a^{24}+\frac{2}{289}a^{23}-\frac{2}{289}a^{22}-\frac{3}{289}a^{20}+\frac{5}{289}a^{19}+\frac{4}{289}a^{18}+\frac{5}{289}a^{17}+\frac{5}{289}a^{16}+\frac{6}{289}a^{15}-\frac{48}{289}a^{14}-\frac{80}{289}a^{13}-\frac{2}{289}a^{12}-\frac{13}{289}a^{11}+\frac{120}{289}a^{10}-\frac{20}{289}a^{9}+\frac{40}{289}a^{8}+\frac{130}{289}a^{7}+\frac{41}{289}a^{6}+\frac{43}{289}a^{5}+\frac{99}{289}a^{4}-\frac{143}{289}a^{3}-\frac{47}{289}a^{2}-\frac{1}{17}a$, $\frac{1}{289}a^{30}+\frac{8}{289}a^{26}+\frac{4}{289}a^{25}-\frac{2}{289}a^{24}+\frac{2}{289}a^{23}+\frac{3}{289}a^{22}-\frac{7}{289}a^{21}+\frac{3}{289}a^{19}+\frac{3}{289}a^{17}-\frac{4}{289}a^{16}-\frac{6}{289}a^{15}-\frac{78}{289}a^{14}-\frac{73}{289}a^{13}-\frac{16}{289}a^{12}-\frac{143}{289}a^{11}+\frac{92}{289}a^{10}+\frac{44}{289}a^{9}+\frac{91}{289}a^{8}-\frac{47}{289}a^{7}-\frac{45}{289}a^{6}-\frac{90}{289}a^{5}+\frac{50}{289}a^{4}+\frac{106}{289}a^{3}-\frac{15}{289}a^{2}$, $\frac{1}{289}a^{31}-\frac{7}{289}a^{26}+\frac{1}{289}a^{25}+\frac{5}{289}a^{23}+\frac{3}{289}a^{22}-\frac{2}{289}a^{21}-\frac{8}{289}a^{20}+\frac{8}{289}a^{19}-\frac{8}{289}a^{18}-\frac{5}{289}a^{17}+\frac{6}{289}a^{16}-\frac{6}{289}a^{15}-\frac{38}{289}a^{14}-\frac{26}{289}a^{13}-\frac{8}{17}a^{12}-\frac{65}{289}a^{11}-\frac{121}{289}a^{10}+\frac{144}{289}a^{9}-\frac{92}{289}a^{8}+\frac{115}{289}a^{7}+\frac{121}{289}a^{6}-\frac{36}{289}a^{5}-\frac{95}{289}a^{4}+\frac{53}{289}a^{3}-\frac{33}{289}a^{2}-\frac{1}{17}a$, $\frac{1}{289}a^{32}+\frac{8}{289}a^{25}-\frac{6}{289}a^{24}-\frac{3}{289}a^{23}+\frac{2}{289}a^{22}-\frac{2}{289}a^{21}+\frac{7}{289}a^{20}+\frac{2}{289}a^{19}-\frac{6}{289}a^{18}-\frac{8}{289}a^{17}-\frac{8}{289}a^{16}+\frac{1}{289}a^{15}+\frac{56}{289}a^{14}+\frac{115}{289}a^{13}-\frac{137}{289}a^{12}+\frac{61}{289}a^{11}-\frac{126}{289}a^{10}-\frac{81}{289}a^{9}-\frac{124}{289}a^{8}-\frac{19}{289}a^{7}+\frac{45}{289}a^{6}-\frac{75}{289}a^{5}+\frac{95}{289}a^{4}+\frac{52}{289}a^{3}+\frac{116}{289}a^{2}-\frac{8}{17}a$, $\frac{1}{4913}a^{33}-\frac{3}{4913}a^{32}+\frac{6}{4913}a^{30}+\frac{3}{4913}a^{29}-\frac{8}{4913}a^{27}-\frac{43}{4913}a^{26}-\frac{134}{4913}a^{25}+\frac{29}{4913}a^{24}+\frac{14}{4913}a^{23}+\frac{14}{4913}a^{22}-\frac{14}{4913}a^{21}+\frac{80}{4913}a^{20}-\frac{56}{4913}a^{19}+\frac{45}{4913}a^{18}+\frac{14}{4913}a^{17}-\frac{23}{4913}a^{16}-\frac{97}{4913}a^{15}+\frac{2022}{4913}a^{14}+\frac{190}{4913}a^{13}+\frac{904}{4913}a^{12}+\frac{745}{4913}a^{11}-\frac{2288}{4913}a^{10}+\frac{988}{4913}a^{9}-\frac{556}{4913}a^{8}+\frac{472}{4913}a^{7}-\frac{1251}{4913}a^{6}+\frac{1455}{4913}a^{5}+\frac{860}{4913}a^{4}+\frac{694}{4913}a^{3}-\frac{128}{289}a^{2}-\frac{6}{17}a$, $\frac{1}{4913}a^{34}+\frac{8}{4913}a^{32}+\frac{6}{4913}a^{31}+\frac{4}{4913}a^{30}-\frac{8}{4913}a^{29}-\frac{8}{4913}a^{28}+\frac{1}{4913}a^{27}-\frac{144}{4913}a^{26}-\frac{118}{4913}a^{25}+\frac{84}{4913}a^{24}-\frac{80}{4913}a^{23}-\frac{40}{4913}a^{22}+\frac{140}{4913}a^{21}+\frac{14}{4913}a^{20}-\frac{4}{4913}a^{19}-\frac{72}{4913}a^{18}-\frac{100}{4913}a^{17}-\frac{132}{4913}a^{16}-\frac{20}{4913}a^{15}-\frac{88}{289}a^{14}-\frac{1977}{4913}a^{13}-\frac{1949}{4913}a^{12}-\frac{376}{4913}a^{11}-\frac{1405}{4913}a^{10}+\frac{317}{4913}a^{9}+\frac{1643}{4913}a^{8}+\frac{1984}{4913}a^{7}-\frac{2247}{4913}a^{6}-\frac{11}{4913}a^{5}+\frac{163}{4913}a^{4}+\frac{2286}{4913}a^{3}+\frac{74}{289}a^{2}-\frac{5}{17}a$, $\frac{1}{83521}a^{35}-\frac{6}{83521}a^{34}-\frac{8}{83521}a^{33}+\frac{91}{83521}a^{32}-\frac{117}{83521}a^{31}-\frac{26}{83521}a^{30}+\frac{111}{83521}a^{29}-\frac{138}{83521}a^{28}+\frac{114}{83521}a^{27}+\frac{1553}{83521}a^{26}-\frac{1161}{83521}a^{25}-\frac{2153}{83521}a^{24}-\frac{1467}{83521}a^{23}+\frac{1091}{83521}a^{22}-\frac{364}{83521}a^{21}-\frac{1759}{83521}a^{20}-\frac{1362}{83521}a^{19}-\frac{1442}{83521}a^{18}+\frac{2046}{83521}a^{17}+\frac{1140}{83521}a^{16}+\frac{1043}{83521}a^{15}-\frac{33513}{83521}a^{14}+\frac{14965}{83521}a^{13}-\frac{6121}{83521}a^{12}+\frac{7971}{83521}a^{11}-\frac{7192}{83521}a^{10}+\frac{4248}{83521}a^{9}+\frac{36841}{83521}a^{8}-\frac{2697}{83521}a^{7}-\frac{17309}{83521}a^{6}-\frac{29086}{83521}a^{5}-\frac{30744}{83521}a^{4}+\frac{1010}{4913}a^{3}+\frac{42}{289}a^{2}+\frac{5}{17}a$, $\frac{1}{83521}a^{36}+\frac{7}{83521}a^{34}-\frac{8}{83521}a^{33}+\frac{123}{83521}a^{32}-\frac{133}{83521}a^{31}+\frac{142}{83521}a^{30}-\frac{33}{83521}a^{29}+\frac{2}{4913}a^{28}+\frac{95}{83521}a^{27}-\frac{751}{83521}a^{26}+\frac{656}{83521}a^{25}-\frac{309}{83521}a^{24}-\frac{1523}{83521}a^{23}-\frac{1485}{83521}a^{22}-\frac{713}{83521}a^{21}-\frac{1410}{83521}a^{20}+\frac{263}{83521}a^{19}+\frac{1588}{83521}a^{18}+\frac{955}{83521}a^{17}+\frac{2035}{83521}a^{16}+\frac{81}{83521}a^{15}+\frac{31844}{83521}a^{14}+\frac{18525}{83521}a^{13}-\frac{24845}{83521}a^{12}+\frac{28547}{83521}a^{11}-\frac{3986}{83521}a^{10}+\frac{36778}{83521}a^{9}-\frac{18903}{83521}a^{8}+\frac{22524}{83521}a^{7}-\frac{81}{4913}a^{6}-\frac{274}{83521}a^{5}-\frac{8922}{83521}a^{4}+\frac{1911}{4913}a^{3}-\frac{77}{289}a^{2}-\frac{4}{17}a$, $\frac{1}{83521}a^{37}-\frac{8}{83521}a^{33}+\frac{97}{83521}a^{32}-\frac{110}{83521}a^{31}+\frac{47}{83521}a^{30}+\frac{124}{83521}a^{29}-\frac{112}{83521}a^{28}-\frac{87}{83521}a^{27}+\frac{121}{83521}a^{26}-\frac{1838}{83521}a^{25}+\frac{645}{83521}a^{24}-\frac{1229}{83521}a^{23}-\frac{1227}{83521}a^{22}-\frac{1871}{83521}a^{21}-\frac{1993}{83521}a^{20}+\frac{344}{83521}a^{19}-\frac{1854}{83521}a^{18}+\frac{1789}{83521}a^{17}-\frac{1133}{83521}a^{16}-\frac{1722}{83521}a^{15}+\frac{31929}{83521}a^{14}+\frac{7284}{83521}a^{13}+\frac{19765}{83521}a^{12}-\frac{20428}{83521}a^{11}+\frac{20006}{83521}a^{10}-\frac{6904}{83521}a^{9}-\frac{2004}{83521}a^{8}+\frac{35182}{83521}a^{7}+\frac{38184}{83521}a^{6}+\frac{4756}{83521}a^{5}+\frac{33070}{83521}a^{4}+\frac{1226}{4913}a^{3}-\frac{38}{289}a^{2}+\frac{1}{17}a$, $\frac{1}{83521}a^{38}-\frac{8}{83521}a^{34}-\frac{5}{83521}a^{33}-\frac{93}{83521}a^{32}+\frac{47}{83521}a^{31}+\frac{90}{83521}a^{30}-\frac{129}{83521}a^{29}-\frac{87}{83521}a^{28}+\frac{70}{83521}a^{27}+\frac{1392}{83521}a^{26}-\frac{1871}{83521}a^{25}-\frac{719}{83521}a^{24}+\frac{1391}{83521}a^{23}-\frac{409}{83521}a^{22}-\frac{565}{83521}a^{21}-\frac{1458}{83521}a^{20}+\frac{2413}{83521}a^{19}-\frac{489}{83521}a^{18}-\frac{249}{83521}a^{17}+\frac{913}{83521}a^{16}-\frac{1527}{83521}a^{15}-\frac{35097}{83521}a^{14}+\frac{22349}{83521}a^{13}-\frac{31138}{83521}a^{12}-\frac{15524}{83521}a^{11}+\frac{37466}{83521}a^{10}-\frac{4231}{83521}a^{9}+\frac{9529}{83521}a^{8}+\frac{13449}{83521}a^{7}-\frac{5206}{83521}a^{6}+\frac{40431}{83521}a^{5}+\frac{996}{4913}a^{4}-\frac{1342}{4913}a^{3}+\frac{93}{289}a^{2}-\frac{3}{17}a$, $\frac{1}{1419857}a^{39}+\frac{8}{1419857}a^{38}+\frac{8}{1419857}a^{37}-\frac{3}{1419857}a^{36}-\frac{2}{1419857}a^{35}+\frac{27}{1419857}a^{34}-\frac{8}{83521}a^{33}+\frac{1225}{1419857}a^{32}-\frac{2111}{1419857}a^{31}-\frac{1383}{1419857}a^{30}-\frac{1198}{1419857}a^{29}+\frac{659}{1419857}a^{28}-\frac{2051}{1419857}a^{27}-\frac{22379}{1419857}a^{26}-\frac{5189}{1419857}a^{25}+\frac{18864}{1419857}a^{24}-\frac{10350}{1419857}a^{23}+\frac{2138}{83521}a^{22}-\frac{37175}{1419857}a^{21}-\frac{39339}{1419857}a^{20}+\frac{28909}{1419857}a^{19}-\frac{32375}{1419857}a^{18}+\frac{604}{83521}a^{17}-\frac{4762}{1419857}a^{16}+\frac{37661}{1419857}a^{15}-\frac{582043}{1419857}a^{14}+\frac{48891}{1419857}a^{13}+\frac{414526}{1419857}a^{12}-\frac{327830}{1419857}a^{11}-\frac{467435}{1419857}a^{10}-\frac{152140}{1419857}a^{9}-\frac{140967}{1419857}a^{8}+\frac{499549}{1419857}a^{7}+\frac{1212}{1419857}a^{6}-\frac{218328}{1419857}a^{5}+\frac{1169}{83521}a^{4}+\frac{345}{4913}a^{3}+\frac{71}{289}a^{2}-\frac{3}{17}a$, $\frac{1}{10451567377}a^{40}+\frac{2776}{10451567377}a^{39}+\frac{22543}{10451567377}a^{38}-\frac{44499}{10451567377}a^{37}+\frac{25252}{10451567377}a^{36}+\frac{5626}{10451567377}a^{35}-\frac{1022495}{10451567377}a^{34}-\frac{573545}{10451567377}a^{33}-\frac{13082934}{10451567377}a^{32}+\frac{1337512}{10451567377}a^{31}-\frac{9357028}{10451567377}a^{30}+\frac{16680046}{10451567377}a^{29}-\frac{10412431}{10451567377}a^{28}-\frac{5347426}{10451567377}a^{27}+\frac{14258277}{614798081}a^{26}-\frac{133833837}{10451567377}a^{25}+\frac{144594932}{10451567377}a^{24}+\frac{171036855}{10451567377}a^{23}+\frac{237977156}{10451567377}a^{22}+\frac{222834236}{10451567377}a^{21}-\frac{28457121}{10451567377}a^{20}+\frac{17678833}{614798081}a^{19}+\frac{154833165}{10451567377}a^{18}+\frac{295515}{24137569}a^{17}-\frac{139525091}{10451567377}a^{16}-\frac{174510540}{10451567377}a^{15}+\frac{592487900}{10451567377}a^{14}-\frac{854303515}{10451567377}a^{13}-\frac{3916260790}{10451567377}a^{12}+\frac{3838615711}{10451567377}a^{11}+\frac{4239005660}{10451567377}a^{10}-\frac{4389694966}{10451567377}a^{9}+\frac{3122528903}{10451567377}a^{8}+\frac{1211116747}{10451567377}a^{7}-\frac{2968261569}{10451567377}a^{6}-\frac{1968407518}{10451567377}a^{5}-\frac{54508598}{614798081}a^{4}+\frac{13089726}{36164593}a^{3}+\frac{553258}{2127329}a^{2}+\frac{17951}{125137}a-\frac{2019}{7361}$, $\frac{1}{8037255312913}a^{41}+\frac{131}{8037255312913}a^{40}+\frac{2234601}{8037255312913}a^{39}+\frac{19268630}{8037255312913}a^{38}+\frac{9084108}{8037255312913}a^{37}+\frac{18550159}{8037255312913}a^{36}+\frac{9035803}{8037255312913}a^{35}-\frac{668450171}{8037255312913}a^{34}-\frac{583091295}{8037255312913}a^{33}-\frac{4275324888}{8037255312913}a^{32}+\frac{3801211285}{8037255312913}a^{31}-\frac{8489403640}{8037255312913}a^{30}+\frac{13865130084}{8037255312913}a^{29}+\frac{13144225494}{8037255312913}a^{28}+\frac{12550337137}{8037255312913}a^{27}+\frac{51086660226}{8037255312913}a^{26}-\frac{43089213885}{8037255312913}a^{25}-\frac{206145237835}{8037255312913}a^{24}-\frac{92062393087}{8037255312913}a^{23}+\frac{199631690912}{8037255312913}a^{22}+\frac{124536435192}{8037255312913}a^{21}+\frac{220590600066}{8037255312913}a^{20}-\frac{23718093656}{8037255312913}a^{19}+\frac{110537912134}{8037255312913}a^{18}+\frac{8502823664}{8037255312913}a^{17}+\frac{84175459014}{8037255312913}a^{16}-\frac{5715863722}{8037255312913}a^{15}-\frac{569632670653}{8037255312913}a^{14}+\frac{3350489174460}{8037255312913}a^{13}-\frac{1059564394239}{8037255312913}a^{12}-\frac{2056003284537}{8037255312913}a^{11}+\frac{671506382869}{8037255312913}a^{10}-\frac{3661347524818}{8037255312913}a^{9}-\frac{3498916227405}{8037255312913}a^{8}+\frac{3675928987953}{8037255312913}a^{7}-\frac{3023125607470}{8037255312913}a^{6}-\frac{3617168699574}{8037255312913}a^{5}+\frac{212689746353}{472779724289}a^{4}-\frac{12307433659}{27810572017}a^{3}-\frac{221901950}{1635916001}a^{2}-\frac{32858967}{96230353}a-\frac{224661}{5660609}$, $\frac{1}{19\!\cdots\!89}a^{42}-\frac{51\!\cdots\!40}{19\!\cdots\!89}a^{41}-\frac{96\!\cdots\!74}{19\!\cdots\!89}a^{40}-\frac{17\!\cdots\!36}{19\!\cdots\!89}a^{39}-\frac{86\!\cdots\!17}{19\!\cdots\!89}a^{38}-\frac{96\!\cdots\!68}{19\!\cdots\!89}a^{37}+\frac{63\!\cdots\!26}{19\!\cdots\!89}a^{36}-\frac{63\!\cdots\!68}{19\!\cdots\!89}a^{35}+\frac{17\!\cdots\!16}{19\!\cdots\!89}a^{34}+\frac{55\!\cdots\!24}{19\!\cdots\!89}a^{33}+\frac{33\!\cdots\!14}{19\!\cdots\!89}a^{32}+\frac{30\!\cdots\!65}{19\!\cdots\!89}a^{31}+\frac{33\!\cdots\!92}{19\!\cdots\!89}a^{30}-\frac{21\!\cdots\!40}{19\!\cdots\!89}a^{29}-\frac{18\!\cdots\!04}{19\!\cdots\!89}a^{28}+\frac{21\!\cdots\!32}{19\!\cdots\!89}a^{27}+\frac{30\!\cdots\!26}{19\!\cdots\!89}a^{26}-\frac{34\!\cdots\!51}{19\!\cdots\!89}a^{25}+\frac{31\!\cdots\!95}{19\!\cdots\!89}a^{24}-\frac{32\!\cdots\!54}{19\!\cdots\!89}a^{23}-\frac{18\!\cdots\!26}{11\!\cdots\!17}a^{22}+\frac{20\!\cdots\!57}{19\!\cdots\!89}a^{21}-\frac{44\!\cdots\!18}{19\!\cdots\!89}a^{20}+\frac{54\!\cdots\!59}{19\!\cdots\!89}a^{19}-\frac{35\!\cdots\!03}{19\!\cdots\!89}a^{18}-\frac{28\!\cdots\!53}{11\!\cdots\!17}a^{17}-\frac{87\!\cdots\!74}{19\!\cdots\!89}a^{16}+\frac{18\!\cdots\!46}{19\!\cdots\!89}a^{15}+\frac{43\!\cdots\!78}{19\!\cdots\!89}a^{14}-\frac{26\!\cdots\!18}{19\!\cdots\!89}a^{13}+\frac{12\!\cdots\!08}{19\!\cdots\!89}a^{12}-\frac{89\!\cdots\!44}{19\!\cdots\!89}a^{11}+\frac{47\!\cdots\!12}{19\!\cdots\!89}a^{10}+\frac{13\!\cdots\!14}{19\!\cdots\!89}a^{9}+\frac{93\!\cdots\!65}{19\!\cdots\!89}a^{8}+\frac{94\!\cdots\!16}{19\!\cdots\!89}a^{7}-\frac{49\!\cdots\!09}{19\!\cdots\!89}a^{6}-\frac{16\!\cdots\!26}{11\!\cdots\!17}a^{5}+\frac{13\!\cdots\!82}{39\!\cdots\!53}a^{4}-\frac{38\!\cdots\!12}{39\!\cdots\!53}a^{3}-\frac{25\!\cdots\!09}{23\!\cdots\!09}a^{2}+\frac{36\!\cdots\!89}{13\!\cdots\!77}a-\frac{84\!\cdots\!29}{80\!\cdots\!81}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $17$

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $42$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{43}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{101554487341926844216969846221080781237895685553160643066505060271306560421136844000042773102578137815468250505123323781432009}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^43 - x^42 - 462*x^41 + 301*x^40 + 94630*x^39 - 49892*x^38 - 11463758*x^37 + 6368083*x^36 + 921810336*x^35 - 636827636*x^34 - 52222121579*x^33 + 47086072273*x^32 + 2155113502777*x^31 - 2510570612339*x^30 - 65969924993323*x^29 + 96629348183472*x^28 + 1509193690295722*x^27 - 2705517116526302*x^26 - 25775660913572833*x^25 + 55430418074111539*x^24 + 325598895562519548*x^23 - 832294062829303477*x^22 - 2983438147701667253*x^21 + 9129779342869086290*x^20 + 19125104314160845818*x^19 - 72594260758345520281*x^18 - 79441906767691419891*x^17 + 413102772817597404709*x^16 + 166866840849449475306*x^15 - 1650628224018564426381*x^14 + 139804498689687778120*x^13 + 4502348802434562518439*x^12 - 1981830512581480780535*x^11 - 8037383143222291539220*x^10 + 5701308150866478483031*x^9 + 8799946070456643867879*x^8 - 8188607772821299311768*x^7 - 5304980067316890480275*x^6 + 6100770874409784770241*x^5 + 1408273844297690430983*x^4 - 2063406363097082700573*x^3 - 90731765675438007935*x^2 + 193966087122261586736*x + 18221685305593614631)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^43 - x^42 - 462*x^41 + 301*x^40 + 94630*x^39 - 49892*x^38 - 11463758*x^37 + 6368083*x^36 + 921810336*x^35 - 636827636*x^34 - 52222121579*x^33 + 47086072273*x^32 + 2155113502777*x^31 - 2510570612339*x^30 - 65969924993323*x^29 + 96629348183472*x^28 + 1509193690295722*x^27 - 2705517116526302*x^26 - 25775660913572833*x^25 + 55430418074111539*x^24 + 325598895562519548*x^23 - 832294062829303477*x^22 - 2983438147701667253*x^21 + 9129779342869086290*x^20 + 19125104314160845818*x^19 - 72594260758345520281*x^18 - 79441906767691419891*x^17 + 413102772817597404709*x^16 + 166866840849449475306*x^15 - 1650628224018564426381*x^14 + 139804498689687778120*x^13 + 4502348802434562518439*x^12 - 1981830512581480780535*x^11 - 8037383143222291539220*x^10 + 5701308150866478483031*x^9 + 8799946070456643867879*x^8 - 8188607772821299311768*x^7 - 5304980067316890480275*x^6 + 6100770874409784770241*x^5 + 1408273844297690430983*x^4 - 2063406363097082700573*x^3 - 90731765675438007935*x^2 + 193966087122261586736*x + 18221685305593614631, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^43 - x^42 - 462*x^41 + 301*x^40 + 94630*x^39 - 49892*x^38 - 11463758*x^37 + 6368083*x^36 + 921810336*x^35 - 636827636*x^34 - 52222121579*x^33 + 47086072273*x^32 + 2155113502777*x^31 - 2510570612339*x^30 - 65969924993323*x^29 + 96629348183472*x^28 + 1509193690295722*x^27 - 2705517116526302*x^26 - 25775660913572833*x^25 + 55430418074111539*x^24 + 325598895562519548*x^23 - 832294062829303477*x^22 - 2983438147701667253*x^21 + 9129779342869086290*x^20 + 19125104314160845818*x^19 - 72594260758345520281*x^18 - 79441906767691419891*x^17 + 413102772817597404709*x^16 + 166866840849449475306*x^15 - 1650628224018564426381*x^14 + 139804498689687778120*x^13 + 4502348802434562518439*x^12 - 1981830512581480780535*x^11 - 8037383143222291539220*x^10 + 5701308150866478483031*x^9 + 8799946070456643867879*x^8 - 8188607772821299311768*x^7 - 5304980067316890480275*x^6 + 6100770874409784770241*x^5 + 1408273844297690430983*x^4 - 2063406363097082700573*x^3 - 90731765675438007935*x^2 + 193966087122261586736*x + 18221685305593614631);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^43 - x^42 - 462*x^41 + 301*x^40 + 94630*x^39 - 49892*x^38 - 11463758*x^37 + 6368083*x^36 + 921810336*x^35 - 636827636*x^34 - 52222121579*x^33 + 47086072273*x^32 + 2155113502777*x^31 - 2510570612339*x^30 - 65969924993323*x^29 + 96629348183472*x^28 + 1509193690295722*x^27 - 2705517116526302*x^26 - 25775660913572833*x^25 + 55430418074111539*x^24 + 325598895562519548*x^23 - 832294062829303477*x^22 - 2983438147701667253*x^21 + 9129779342869086290*x^20 + 19125104314160845818*x^19 - 72594260758345520281*x^18 - 79441906767691419891*x^17 + 413102772817597404709*x^16 + 166866840849449475306*x^15 - 1650628224018564426381*x^14 + 139804498689687778120*x^13 + 4502348802434562518439*x^12 - 1981830512581480780535*x^11 - 8037383143222291539220*x^10 + 5701308150866478483031*x^9 + 8799946070456643867879*x^8 - 8188607772821299311768*x^7 - 5304980067316890480275*x^6 + 6100770874409784770241*x^5 + 1408273844297690430983*x^4 - 2063406363097082700573*x^3 - 90731765675438007935*x^2 + 193966087122261586736*x + 18221685305593614631);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{43}$ (as 43T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 43
The 43 conjugacy class representatives for $C_{43}$
Character table for $C_{43}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $43$ $43$ $43$ $43$ $43$ $43$ ${\href{/padicField/17.1.0.1}{1} }^{43}$ $43$ $43$ $43$ $43$ $43$ $43$ $43$ $43$ $43$ $43$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(947\) Copy content Toggle raw display Deg $43$$43$$1$$42$