# Properties

 Label 43.1.39435174965...6875.1 Degree $43$ Signature $[1, 21]$ Discriminant $-\,5^{42}\cdot 43^{43}$ Root discriminant $207.10$ Ramified primes $5, 43$ Class number Not computed Class group Not computed Galois group $F_{43}$ (as 43T8)

# Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^43 - 5)

gp: K = bnfinit(x^43 - 5, 1)

## Normalizeddefining polynomial

$$x^{43} - 5$$

magma: DefiningPolynomial(K);

sage: K.defining_polynomial()

gp: K.pol

## Invariants

 Degree: $43$ magma: Degree(K);  sage: K.degree()  gp: poldegree(K.pol) Signature: $[1, 21]$ magma: Signature(K);  sage: K.signature()  gp: K.sign Discriminant: $$-3943517496516112150835347458453732578688700991509015683067847748815326440308126620948314666748046875=-\,5^{42}\cdot 43^{43}$$ magma: Discriminant(K);  sage: K.disc()  gp: K.disc Root discriminant: $207.10$ magma: Abs(Discriminant(K))^(1/Degree(K));  sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $5, 43$ magma: PrimeDivisors(Discriminant(K));  sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$

magma: IntegralBasis(K);

sage: K.integral_basis()

gp: K.zk

## Class group and class number

Not computed

magma: ClassGroup(K);

sage: K.class_group().invariants()

gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);

sage: UK = K.unit_group()

 Rank: $21$ magma: UnitRank(K);  sage: UK.rank()  gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  sage: UK.torsion_generator()  gp: K.tu[2] Fundamental units: Not computed magma: [K!f(g): g in Generators(UK)];  sage: UK.fundamental_units()  gp: K.fu Regulator: Not computed magma: Regulator(K);  sage: K.regulator()  gp: K.reg

## Galois group

$F_{43}$ (as 43T8):

magma: GaloisGroup(K);

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

 A solvable group of order 1806 The 43 conjugacy class representatives for $F_{43}$ Character table for $F_{43}$ is not computed

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ${\href{/LocalNumberField/2.14.0.1}{14} }^{3}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ $42{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{7}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.7.0.1}{7} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ $21^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ $21^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ $42{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ $21^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ $42{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ $21^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ R ${\href{/LocalNumberField/47.7.0.1}{7} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ $21^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.7.0.1}{7} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
43Data not computed