Normalized defining polynomial
\( x^{43} + 4x - 2 \)
Invariants
Degree: | $43$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 21]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-116\!\cdots\!624\) \(\medspace = -\,2^{42}\cdot 13\cdot 53\cdot 359\cdot 379\cdot 397\cdot 15583\cdot 15667\cdot 16763\cdot 1652591\cdot 7443949\cdot 81974567114861\cdot 17\!\cdots\!91\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(154.01\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{42/43}13^{1/2}53^{1/2}359^{1/2}379^{1/2}397^{1/2}15583^{1/2}15667^{1/2}16763^{1/2}1652591^{1/2}7443949^{1/2}81974567114861^{1/2}17195311805158423964285480495891^{1/2}\approx 1.0114031480275054e+41$ | ||
Ramified primes: | \(2\), \(13\), \(53\), \(359\), \(379\), \(397\), \(15583\), \(15667\), \(16763\), \(1652591\), \(7443949\), \(81974567114861\), \(17195\!\cdots\!95891\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-26411\!\cdots\!94131}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $21$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{21}\cdot R \cdot h}{2\cdot\sqrt{11615818670249741926786783635700464005809046848845495205636184619664502520703084303881154330624}}\cr\mathstrut & \text{
Galois group
A non-solvable group of order 60415263063373835637355132068513997507264512000000000 |
The 63261 conjugacy class representatives for $S_{43}$ are not computed |
Character table for $S_{43}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $37{,}\,{\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/5.10.0.1}{10} }{,}\,{\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.5.0.1}{5} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | $31{,}\,{\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | $29{,}\,{\href{/padicField/11.9.0.1}{9} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | R | $21{,}\,{\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | $30{,}\,{\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | $24{,}\,{\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | $42{,}\,{\href{/padicField/37.1.0.1}{1} }$ | $22{,}\,{\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.14.0.1}{14} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | $24{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | R | $19^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | Deg $43$ | $43$ | $1$ | $42$ | |||
\(13\) | $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
13.2.1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
13.8.0.1 | $x^{8} + 8 x^{4} + 12 x^{3} + 2 x^{2} + 3 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
13.10.0.1 | $x^{10} + 7 x^{5} + 5 x^{4} + 8 x^{3} + x^{2} + x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
13.22.0.1 | $x^{22} + 2 x^{2} - 4 x + 7$ | $1$ | $22$ | $0$ | 22T1 | $[\ ]^{22}$ | |
\(53\) | 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
53.4.0.1 | $x^{4} + 9 x^{2} + 38 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
Deg $37$ | $1$ | $37$ | $0$ | $C_{37}$ | $[\ ]^{37}$ | ||
\(359\) | $\Q_{359}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{359}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{359}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $12$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | ||
Deg $20$ | $1$ | $20$ | $0$ | 20T1 | $[\ ]^{20}$ | ||
\(379\) | $\Q_{379}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | ||
Deg $23$ | $1$ | $23$ | $0$ | $C_{23}$ | $[\ ]^{23}$ | ||
\(397\) | $\Q_{397}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $40$ | $1$ | $40$ | $0$ | $C_{40}$ | $[\ ]^{40}$ | ||
\(15583\) | $\Q_{15583}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $19$ | $1$ | $19$ | $0$ | $C_{19}$ | $[\ ]^{19}$ | ||
Deg $21$ | $1$ | $21$ | $0$ | $C_{21}$ | $[\ ]^{21}$ | ||
\(15667\) | $\Q_{15667}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{15667}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | ||
Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | ||
Deg $12$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | ||
\(16763\) | $\Q_{16763}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{16763}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $39$ | $1$ | $39$ | $0$ | $C_{39}$ | $[\ ]^{39}$ | ||
\(1652591\) | $\Q_{1652591}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{1652591}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $39$ | $1$ | $39$ | $0$ | $C_{39}$ | $[\ ]^{39}$ | ||
\(7443949\) | $\Q_{7443949}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | ||
Deg $23$ | $1$ | $23$ | $0$ | $C_{23}$ | $[\ ]^{23}$ | ||
\(81974567114861\) | $\Q_{81974567114861}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | ||
Deg $21$ | $1$ | $21$ | $0$ | $C_{21}$ | $[\ ]^{21}$ | ||
\(171\!\cdots\!891\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $15$ | $1$ | $15$ | $0$ | $C_{15}$ | $[\ ]^{15}$ | ||
Deg $26$ | $1$ | $26$ | $0$ | $C_{26}$ | $[\ ]^{26}$ |