Normalized defining polynomial
\( x^{43} - x^{42} - 210 x^{41} + 177 x^{40} + 19424 x^{39} - 12392 x^{38} - 1053196 x^{37} + \cdots + 1403424452501 \)
Invariants
Degree: | $43$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[43, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(444\!\cdots\!961\) \(\medspace = 431^{42}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(374.29\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $431^{42/43}\approx 374.29183811372997$ | ||
Ramified primes: | \(431\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $43$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(431\) | ||
Dirichlet character group: | $\lbrace$$\chi_{431}(128,·)$, $\chi_{431}(1,·)$, $\chi_{431}(2,·)$, $\chi_{431}(3,·)$, $\chi_{431}(4,·)$, $\chi_{431}(6,·)$, $\chi_{431}(8,·)$, $\chi_{431}(9,·)$, $\chi_{431}(12,·)$, $\chi_{431}(256,·)$, $\chi_{431}(16,·)$, $\chi_{431}(145,·)$, $\chi_{431}(18,·)$, $\chi_{431}(149,·)$, $\chi_{431}(24,·)$, $\chi_{431}(27,·)$, $\chi_{431}(32,·)$, $\chi_{431}(162,·)$, $\chi_{431}(36,·)$, $\chi_{431}(165,·)$, $\chi_{431}(64,·)$, $\chi_{431}(298,·)$, $\chi_{431}(48,·)$, $\chi_{431}(54,·)$, $\chi_{431}(55,·)$, $\chi_{431}(192,·)$, $\chi_{431}(288,·)$, $\chi_{431}(324,·)$, $\chi_{431}(72,·)$, $\chi_{431}(330,·)$, $\chi_{431}(290,·)$, $\chi_{431}(81,·)$, $\chi_{431}(216,·)$, $\chi_{431}(217,·)$, $\chi_{431}(384,·)$, $\chi_{431}(220,·)$, $\chi_{431}(96,·)$, $\chi_{431}(144,·)$, $\chi_{431}(229,·)$, $\chi_{431}(337,·)$, $\chi_{431}(108,·)$, $\chi_{431}(110,·)$, $\chi_{431}(243,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $\frac{1}{617}a^{40}-\frac{96}{617}a^{39}-\frac{38}{617}a^{38}-\frac{212}{617}a^{37}-\frac{104}{617}a^{36}-\frac{244}{617}a^{35}+\frac{238}{617}a^{34}-\frac{176}{617}a^{33}-\frac{13}{617}a^{32}+\frac{269}{617}a^{31}-\frac{48}{617}a^{30}-\frac{85}{617}a^{29}+\frac{101}{617}a^{28}-\frac{109}{617}a^{27}-\frac{293}{617}a^{26}-\frac{87}{617}a^{25}-\frac{192}{617}a^{24}-\frac{36}{617}a^{23}-\frac{264}{617}a^{22}-\frac{84}{617}a^{21}-\frac{289}{617}a^{20}+\frac{224}{617}a^{19}+\frac{114}{617}a^{18}+\frac{236}{617}a^{17}-\frac{43}{617}a^{16}+\frac{293}{617}a^{15}+\frac{198}{617}a^{14}-\frac{239}{617}a^{13}+\frac{243}{617}a^{12}-\frac{265}{617}a^{11}+\frac{301}{617}a^{10}-\frac{117}{617}a^{9}+\frac{281}{617}a^{8}-\frac{235}{617}a^{7}+\frac{215}{617}a^{6}+\frac{308}{617}a^{5}-\frac{83}{617}a^{4}-\frac{166}{617}a^{3}+\frac{245}{617}a^{2}-\frac{51}{617}a+\frac{248}{617}$, $\frac{1}{320964466793}a^{41}+\frac{139796710}{320964466793}a^{40}+\frac{28941309337}{320964466793}a^{39}+\frac{126390064522}{320964466793}a^{38}+\frac{66208018678}{320964466793}a^{37}+\frac{14066083648}{320964466793}a^{36}+\frac{87870452426}{320964466793}a^{35}-\frac{15882023825}{320964466793}a^{34}-\frac{117381994781}{320964466793}a^{33}+\frac{51354677571}{320964466793}a^{32}+\frac{31659308681}{320964466793}a^{31}+\frac{26506178368}{320964466793}a^{30}+\frac{72390307907}{320964466793}a^{29}-\frac{156929706337}{320964466793}a^{28}+\frac{30802602707}{320964466793}a^{27}+\frac{81085137460}{320964466793}a^{26}+\frac{158840472175}{320964466793}a^{25}-\frac{153999837168}{320964466793}a^{24}+\frac{131668817904}{320964466793}a^{23}-\frac{123034361111}{320964466793}a^{22}-\frac{85402152911}{320964466793}a^{21}-\frac{117152204418}{320964466793}a^{20}+\frac{117058398997}{320964466793}a^{19}+\frac{90109407825}{320964466793}a^{18}+\frac{145433894181}{320964466793}a^{17}-\frac{34944252620}{320964466793}a^{16}+\frac{95471731337}{320964466793}a^{15}-\frac{77725354228}{320964466793}a^{14}-\frac{99566354704}{320964466793}a^{13}+\frac{41397120030}{320964466793}a^{12}+\frac{119638790936}{320964466793}a^{11}+\frac{55272436394}{320964466793}a^{10}-\frac{77662797205}{320964466793}a^{9}+\frac{58406679660}{320964466793}a^{8}+\frac{88370551543}{320964466793}a^{7}-\frac{61647862697}{320964466793}a^{6}-\frac{33155475203}{320964466793}a^{5}-\frac{33723425418}{320964466793}a^{4}+\frac{93792925557}{320964466793}a^{3}-\frac{97241821493}{320964466793}a^{2}+\frac{23328690925}{320964466793}a-\frac{107274973111}{320964466793}$, $\frac{1}{14\!\cdots\!37}a^{42}-\frac{22\!\cdots\!44}{14\!\cdots\!37}a^{41}+\frac{11\!\cdots\!72}{14\!\cdots\!37}a^{40}-\frac{66\!\cdots\!58}{14\!\cdots\!37}a^{39}+\frac{25\!\cdots\!94}{14\!\cdots\!37}a^{38}-\frac{61\!\cdots\!28}{14\!\cdots\!37}a^{37}+\frac{65\!\cdots\!97}{14\!\cdots\!37}a^{36}+\frac{44\!\cdots\!45}{14\!\cdots\!37}a^{35}-\frac{41\!\cdots\!24}{14\!\cdots\!37}a^{34}-\frac{14\!\cdots\!33}{14\!\cdots\!37}a^{33}-\frac{47\!\cdots\!66}{14\!\cdots\!37}a^{32}-\frac{17\!\cdots\!80}{14\!\cdots\!37}a^{31}-\frac{64\!\cdots\!37}{14\!\cdots\!37}a^{30}+\frac{62\!\cdots\!71}{14\!\cdots\!37}a^{29}+\frac{29\!\cdots\!34}{14\!\cdots\!37}a^{28}-\frac{19\!\cdots\!95}{14\!\cdots\!37}a^{27}+\frac{95\!\cdots\!04}{14\!\cdots\!37}a^{26}+\frac{10\!\cdots\!42}{14\!\cdots\!37}a^{25}+\frac{66\!\cdots\!21}{14\!\cdots\!37}a^{24}+\frac{66\!\cdots\!88}{14\!\cdots\!37}a^{23}-\frac{52\!\cdots\!52}{14\!\cdots\!37}a^{22}+\frac{49\!\cdots\!09}{14\!\cdots\!37}a^{21}+\frac{41\!\cdots\!80}{14\!\cdots\!37}a^{20}+\frac{48\!\cdots\!27}{14\!\cdots\!37}a^{19}-\frac{25\!\cdots\!98}{14\!\cdots\!37}a^{18}+\frac{55\!\cdots\!45}{14\!\cdots\!37}a^{17}+\frac{62\!\cdots\!99}{14\!\cdots\!37}a^{16}+\frac{57\!\cdots\!15}{14\!\cdots\!37}a^{15}-\frac{60\!\cdots\!54}{14\!\cdots\!37}a^{14}-\frac{71\!\cdots\!58}{14\!\cdots\!37}a^{13}-\frac{77\!\cdots\!19}{23\!\cdots\!61}a^{12}-\frac{42\!\cdots\!38}{14\!\cdots\!37}a^{11}+\frac{33\!\cdots\!80}{14\!\cdots\!37}a^{10}+\frac{97\!\cdots\!15}{23\!\cdots\!61}a^{9}+\frac{21\!\cdots\!41}{14\!\cdots\!37}a^{8}-\frac{37\!\cdots\!20}{14\!\cdots\!37}a^{7}-\frac{44\!\cdots\!01}{14\!\cdots\!37}a^{6}+\frac{19\!\cdots\!19}{14\!\cdots\!37}a^{5}+\frac{26\!\cdots\!23}{14\!\cdots\!37}a^{4}+\frac{26\!\cdots\!89}{14\!\cdots\!37}a^{3}-\frac{36\!\cdots\!53}{14\!\cdots\!37}a^{2}+\frac{16\!\cdots\!33}{14\!\cdots\!37}a-\frac{22\!\cdots\!52}{45\!\cdots\!79}$
Monogenic: | No | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $42$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{43}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{444677695956607074780919035502815976195331208356891344496189409566167816104341684988715963441514628066825276961}}\cr\mathstrut & \text{
Galois group
A cyclic group of order 43 |
The 43 conjugacy class representatives for $C_{43}$ |
Character table for $C_{43}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ | $43$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(431\) | Deg $43$ | $43$ | $1$ | $42$ |