Normalized defining polynomial
\( x^{43} - 5x - 1 \)
Invariants
Degree: | $43$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 20]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(170\!\cdots\!493\) \(\medspace = 67\cdot 25\!\cdots\!79\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(192.52\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $67^{1/2}2547449482642716810547874063290873780104753209127002162928178624502864738223700120103316907477679^{1/2}\approx 1.306442173756887e+49$ | ||
Ramified primes: | \(67\), \(25474\!\cdots\!77679\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{17067\!\cdots\!04493}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $22$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{3}\cdot(2\pi)^{20}\cdot R \cdot h}{2\cdot\sqrt{170679115337062026306707562240488543267018465011509144916187967841691937460987908046922232801004493}}\cr\mathstrut & \text{
Galois group
A non-solvable group of order 60415263063373835637355132068513997507264512000000000 |
The 63261 conjugacy class representatives for $S_{43}$ are not computed |
Character table for $S_{43}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $38{,}\,{\href{/padicField/2.5.0.1}{5} }$ | $37{,}\,{\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | $42{,}\,{\href{/padicField/5.1.0.1}{1} }$ | $20{,}\,{\href{/padicField/7.11.0.1}{11} }{,}\,{\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | $15{,}\,{\href{/padicField/11.14.0.1}{14} }{,}\,{\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/padicField/13.11.0.1}{11} }{,}\,{\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | $29{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}$ | $34{,}\,{\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | $15{,}\,{\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | $26{,}\,15{,}\,{\href{/padicField/31.2.0.1}{2} }$ | $17{,}\,{\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | $24{,}\,{\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | $42{,}\,{\href{/padicField/43.1.0.1}{1} }$ | $22{,}\,{\href{/padicField/47.10.0.1}{10} }{,}\,{\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ | $27{,}\,{\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | $25{,}\,{\href{/padicField/59.13.0.1}{13} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(67\) | $\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
67.2.1.2 | $x^{2} + 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
67.12.0.1 | $x^{12} + 3 x^{8} + 57 x^{7} + 27 x^{6} + 4 x^{5} + 55 x^{4} + 64 x^{3} + 21 x^{2} + 27 x + 2$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
Deg $26$ | $1$ | $26$ | $0$ | $C_{26}$ | $[\ ]^{26}$ | ||
\(254\!\cdots\!679\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $41$ | $1$ | $41$ | $0$ | $C_{41}$ | $[\ ]^{41}$ |