Normalized defining polynomial
\( x^{43} - 2x - 4 \)
Invariants
Degree: | $43$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 21]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-335\!\cdots\!704\) \(\medspace = -\,2^{82}\cdot 17\cdot 911\cdot 1321\cdot 196825567\cdot 17\!\cdots\!89\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(149.63\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | not computed | ||
Ramified primes: | \(2\), \(17\), \(911\), \(1321\), \(196825567\), \(17228\!\cdots\!51489\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-69375\!\cdots\!53001}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $\frac{1}{10}a^{42}+\frac{1}{5}a^{41}+\frac{2}{5}a^{40}-\frac{1}{5}a^{39}-\frac{2}{5}a^{38}+\frac{1}{5}a^{37}+\frac{2}{5}a^{36}-\frac{1}{5}a^{35}-\frac{2}{5}a^{34}+\frac{1}{5}a^{33}+\frac{2}{5}a^{32}-\frac{1}{5}a^{31}-\frac{2}{5}a^{30}+\frac{1}{5}a^{29}+\frac{2}{5}a^{28}-\frac{1}{5}a^{27}-\frac{2}{5}a^{26}+\frac{1}{5}a^{25}+\frac{2}{5}a^{24}-\frac{1}{5}a^{23}-\frac{2}{5}a^{22}+\frac{1}{5}a^{21}+\frac{2}{5}a^{20}-\frac{1}{5}a^{19}-\frac{2}{5}a^{18}+\frac{1}{5}a^{17}+\frac{2}{5}a^{16}-\frac{1}{5}a^{15}-\frac{2}{5}a^{14}+\frac{1}{5}a^{13}+\frac{2}{5}a^{12}-\frac{1}{5}a^{11}-\frac{2}{5}a^{10}+\frac{1}{5}a^{9}+\frac{2}{5}a^{8}-\frac{1}{5}a^{7}-\frac{2}{5}a^{6}+\frac{1}{5}a^{5}+\frac{2}{5}a^{4}-\frac{1}{5}a^{3}-\frac{2}{5}a^{2}+\frac{1}{5}a+\frac{1}{5}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $21$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{21}\cdot R \cdot h}{2\cdot\sqrt{3354773669271577653568285803640546404693410239170973401358900578361902104169371242332059336704}}\cr\mathstrut & \text{
Galois group
A non-solvable group of order 60415263063373835637355132068513997507264512000000000 |
The 63261 conjugacy class representatives for $S_{43}$ are not computed |
Character table for $S_{43}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $37{,}\,{\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | $28{,}\,{\href{/padicField/5.5.0.1}{5} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{3}$ | $24{,}\,{\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | $29{,}\,{\href{/padicField/11.9.0.1}{9} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | $42{,}\,{\href{/padicField/13.1.0.1}{1} }$ | R | $34{,}\,{\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $35{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | $29{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | $30{,}\,{\href{/padicField/37.11.0.1}{11} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | $20{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.14.0.1}{14} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | $23{,}\,17{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | $38{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | $32{,}\,{\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $42$ | $42$ | $1$ | $82$ | ||||
\(17\) | 17.2.0.1 | $x^{2} + 16 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.14.0.1 | $x^{14} + x^{8} + 11 x^{7} + x^{6} + 8 x^{5} + 16 x^{4} + 13 x^{3} + 9 x^{2} + 3 x + 3$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | |
Deg $25$ | $1$ | $25$ | $0$ | $C_{25}$ | $[\ ]^{25}$ | ||
\(911\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $13$ | $1$ | $13$ | $0$ | $C_{13}$ | $[\ ]^{13}$ | ||
Deg $28$ | $1$ | $28$ | $0$ | $C_{28}$ | $[\ ]^{28}$ | ||
\(1321\) | $\Q_{1321}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{1321}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $13$ | $1$ | $13$ | $0$ | $C_{13}$ | $[\ ]^{13}$ | ||
Deg $20$ | $1$ | $20$ | $0$ | 20T1 | $[\ ]^{20}$ | ||
\(196825567\) | $\Q_{196825567}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{196825567}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | ||
Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | ||
Deg $12$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | ||
\(172\!\cdots\!489\) | $\Q_{17\!\cdots\!89}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{17\!\cdots\!89}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | ||
Deg $28$ | $1$ | $28$ | $0$ | $C_{28}$ | $[\ ]^{28}$ |