sage: x = polygen(QQ); K.<a> = NumberField(x^43 - 903*x^41 - 645*x^40 + 358276*x^39 + 487362*x^38 - 82668446*x^37 - 161379172*x^36 + 12386889944*x^35 + 31035129471*x^34 - 1275092913940*x^33 - 3868686195114*x^32 + 93052767268909*x^31 + 330473143424644*x^30 - 4897798025442393*x^29 - 19967338988758228*x^28 + 187329847291648022*x^27 + 869728040966016241*x^26 - 5201925841676982029*x^25 - 27621776964130665961*x^24 + 103748981858304966660*x^23 + 643326429466437698421*x^22 - 1445787294046167541816*x^21 - 10999588529245966977339*x^20 + 13140703542377826450494*x^19 + 137573117593988043652238*x^18 - 60838518194479293931722*x^17 - 1247516677692517201034941*x^16 - 134666416459554320685647*x^15 + 8070410654031859605939559*x^14 + 4203376282667672263555078*x^13 - 36228120784944419229616219*x^12 - 30515963297503545387850753*x^11 + 107534691527795878017440861*x^10 + 119306453339061961678830425*x^9 - 192818992256047972290970619*x^8 - 263326021640166500214931210*x^7 + 170563929616560831037152772*x^6 + 294222510747058121054570076*x^5 - 33622183448420036732904682*x^4 - 118832831442545361067982885*x^3 - 7933826886293481520543865*x^2 + 14571491290875996179048369*x + 2572343484535669027372727)
gp: K = bnfinit(y^43 - 903*y^41 - 645*y^40 + 358276*y^39 + 487362*y^38 - 82668446*y^37 - 161379172*y^36 + 12386889944*y^35 + 31035129471*y^34 - 1275092913940*y^33 - 3868686195114*y^32 + 93052767268909*y^31 + 330473143424644*y^30 - 4897798025442393*y^29 - 19967338988758228*y^28 + 187329847291648022*y^27 + 869728040966016241*y^26 - 5201925841676982029*y^25 - 27621776964130665961*y^24 + 103748981858304966660*y^23 + 643326429466437698421*y^22 - 1445787294046167541816*y^21 - 10999588529245966977339*y^20 + 13140703542377826450494*y^19 + 137573117593988043652238*y^18 - 60838518194479293931722*y^17 - 1247516677692517201034941*y^16 - 134666416459554320685647*y^15 + 8070410654031859605939559*y^14 + 4203376282667672263555078*y^13 - 36228120784944419229616219*y^12 - 30515963297503545387850753*y^11 + 107534691527795878017440861*y^10 + 119306453339061961678830425*y^9 - 192818992256047972290970619*y^8 - 263326021640166500214931210*y^7 + 170563929616560831037152772*y^6 + 294222510747058121054570076*y^5 - 33622183448420036732904682*y^4 - 118832831442545361067982885*y^3 - 7933826886293481520543865*y^2 + 14571491290875996179048369*y + 2572343484535669027372727, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^43 - 903*x^41 - 645*x^40 + 358276*x^39 + 487362*x^38 - 82668446*x^37 - 161379172*x^36 + 12386889944*x^35 + 31035129471*x^34 - 1275092913940*x^33 - 3868686195114*x^32 + 93052767268909*x^31 + 330473143424644*x^30 - 4897798025442393*x^29 - 19967338988758228*x^28 + 187329847291648022*x^27 + 869728040966016241*x^26 - 5201925841676982029*x^25 - 27621776964130665961*x^24 + 103748981858304966660*x^23 + 643326429466437698421*x^22 - 1445787294046167541816*x^21 - 10999588529245966977339*x^20 + 13140703542377826450494*x^19 + 137573117593988043652238*x^18 - 60838518194479293931722*x^17 - 1247516677692517201034941*x^16 - 134666416459554320685647*x^15 + 8070410654031859605939559*x^14 + 4203376282667672263555078*x^13 - 36228120784944419229616219*x^12 - 30515963297503545387850753*x^11 + 107534691527795878017440861*x^10 + 119306453339061961678830425*x^9 - 192818992256047972290970619*x^8 - 263326021640166500214931210*x^7 + 170563929616560831037152772*x^6 + 294222510747058121054570076*x^5 - 33622183448420036732904682*x^4 - 118832831442545361067982885*x^3 - 7933826886293481520543865*x^2 + 14571491290875996179048369*x + 2572343484535669027372727);
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^43 - 903*x^41 - 645*x^40 + 358276*x^39 + 487362*x^38 - 82668446*x^37 - 161379172*x^36 + 12386889944*x^35 + 31035129471*x^34 - 1275092913940*x^33 - 3868686195114*x^32 + 93052767268909*x^31 + 330473143424644*x^30 - 4897798025442393*x^29 - 19967338988758228*x^28 + 187329847291648022*x^27 + 869728040966016241*x^26 - 5201925841676982029*x^25 - 27621776964130665961*x^24 + 103748981858304966660*x^23 + 643326429466437698421*x^22 - 1445787294046167541816*x^21 - 10999588529245966977339*x^20 + 13140703542377826450494*x^19 + 137573117593988043652238*x^18 - 60838518194479293931722*x^17 - 1247516677692517201034941*x^16 - 134666416459554320685647*x^15 + 8070410654031859605939559*x^14 + 4203376282667672263555078*x^13 - 36228120784944419229616219*x^12 - 30515963297503545387850753*x^11 + 107534691527795878017440861*x^10 + 119306453339061961678830425*x^9 - 192818992256047972290970619*x^8 - 263326021640166500214931210*x^7 + 170563929616560831037152772*x^6 + 294222510747058121054570076*x^5 - 33622183448420036732904682*x^4 - 118832831442545361067982885*x^3 - 7933826886293481520543865*x^2 + 14571491290875996179048369*x + 2572343484535669027372727)
\( x^{43} - 903 x^{41} - 645 x^{40} + 358276 x^{39} + 487362 x^{38} - 82668446 x^{37} + \cdots + 25\!\cdots\!27 \)
sage: K.defining_polynomial()
magma: DefiningPolynomial(K);
oscar: defining_polynomial(K)
Degree: | | $43$ |
|
Signature: | | $[43, 0]$ |
|
Discriminant: | |
\(162\!\cdots\!801\)
\(\medspace = 43^{84}\)
|
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
|
Root discriminant: | | \(1552.25\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
|
Galois root discriminant: | | $43^{84/43}\approx 1552.2498771818027$
|
Ramified primes: | |
\(43\)
|
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
|
Discriminant root field: | | \(\Q\)
|
$\card{ \Gal(K/\Q) }$: | | $43$ |
|
This field is Galois and abelian over $\Q$. |
Conductor: | | \(1849=43^{2}\) |
Dirichlet character group:
| |
$\lbrace$$\chi_{1849}(1,·)$, $\chi_{1849}(130,·)$, $\chi_{1849}(259,·)$, $\chi_{1849}(388,·)$, $\chi_{1849}(517,·)$, $\chi_{1849}(646,·)$, $\chi_{1849}(775,·)$, $\chi_{1849}(904,·)$, $\chi_{1849}(1033,·)$, $\chi_{1849}(1162,·)$, $\chi_{1849}(1291,·)$, $\chi_{1849}(1420,·)$, $\chi_{1849}(1549,·)$, $\chi_{1849}(1678,·)$, $\chi_{1849}(1807,·)$, $\chi_{1849}(44,·)$, $\chi_{1849}(173,·)$, $\chi_{1849}(302,·)$, $\chi_{1849}(431,·)$, $\chi_{1849}(560,·)$, $\chi_{1849}(689,·)$, $\chi_{1849}(818,·)$, $\chi_{1849}(947,·)$, $\chi_{1849}(1076,·)$, $\chi_{1849}(1205,·)$, $\chi_{1849}(1334,·)$, $\chi_{1849}(1463,·)$, $\chi_{1849}(1592,·)$, $\chi_{1849}(1721,·)$, $\chi_{1849}(87,·)$, $\chi_{1849}(216,·)$, $\chi_{1849}(345,·)$, $\chi_{1849}(474,·)$, $\chi_{1849}(603,·)$, $\chi_{1849}(732,·)$, $\chi_{1849}(861,·)$, $\chi_{1849}(990,·)$, $\chi_{1849}(1119,·)$, $\chi_{1849}(1248,·)$, $\chi_{1849}(1377,·)$, $\chi_{1849}(1506,·)$, $\chi_{1849}(1635,·)$, $\chi_{1849}(1764,·)$$\rbrace$
|
This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{19}a^{19}-\frac{1}{19}a$, $\frac{1}{19}a^{20}-\frac{1}{19}a^{2}$, $\frac{1}{19}a^{21}-\frac{1}{19}a^{3}$, $\frac{1}{19}a^{22}-\frac{1}{19}a^{4}$, $\frac{1}{19}a^{23}-\frac{1}{19}a^{5}$, $\frac{1}{19}a^{24}-\frac{1}{19}a^{6}$, $\frac{1}{19}a^{25}-\frac{1}{19}a^{7}$, $\frac{1}{19}a^{26}-\frac{1}{19}a^{8}$, $\frac{1}{19}a^{27}-\frac{1}{19}a^{9}$, $\frac{1}{19}a^{28}-\frac{1}{19}a^{10}$, $\frac{1}{19}a^{29}-\frac{1}{19}a^{11}$, $\frac{1}{19}a^{30}-\frac{1}{19}a^{12}$, $\frac{1}{361}a^{31}-\frac{1}{361}a^{30}+\frac{9}{361}a^{29}+\frac{3}{361}a^{28}+\frac{7}{361}a^{27}+\frac{2}{361}a^{26}+\frac{1}{361}a^{25}+\frac{4}{361}a^{24}+\frac{5}{361}a^{23}-\frac{1}{361}a^{22}-\frac{4}{361}a^{21}-\frac{7}{361}a^{20}+\frac{3}{19}a^{18}-\frac{5}{19}a^{16}-\frac{8}{19}a^{15}-\frac{7}{19}a^{14}-\frac{134}{361}a^{13}+\frac{172}{361}a^{12}-\frac{180}{361}a^{11}-\frac{79}{361}a^{10}-\frac{83}{361}a^{9}-\frac{78}{361}a^{8}-\frac{115}{361}a^{7}-\frac{61}{361}a^{6}-\frac{119}{361}a^{5}-\frac{75}{361}a^{4}+\frac{42}{361}a^{3}-\frac{69}{361}a^{2}$, $\frac{1}{361}a^{32}+\frac{8}{361}a^{30}-\frac{7}{361}a^{29}-\frac{9}{361}a^{28}+\frac{9}{361}a^{27}+\frac{3}{361}a^{26}+\frac{5}{361}a^{25}+\frac{9}{361}a^{24}+\frac{4}{361}a^{23}-\frac{5}{361}a^{22}+\frac{8}{361}a^{21}-\frac{7}{361}a^{20}+\frac{3}{19}a^{18}-\frac{5}{19}a^{17}+\frac{6}{19}a^{16}+\frac{4}{19}a^{15}+\frac{94}{361}a^{14}+\frac{2}{19}a^{13}-\frac{8}{361}a^{12}+\frac{121}{361}a^{11}-\frac{143}{361}a^{10}-\frac{161}{361}a^{9}+\frac{168}{361}a^{8}-\frac{176}{361}a^{7}-\frac{180}{361}a^{6}+\frac{167}{361}a^{5}-\frac{33}{361}a^{4}-\frac{46}{361}a^{3}-\frac{69}{361}a^{2}+\frac{3}{19}a$, $\frac{1}{361}a^{33}+\frac{1}{361}a^{30}-\frac{5}{361}a^{29}+\frac{4}{361}a^{28}+\frac{4}{361}a^{27}+\frac{8}{361}a^{26}+\frac{1}{361}a^{25}-\frac{9}{361}a^{24}-\frac{7}{361}a^{23}-\frac{3}{361}a^{22}+\frac{6}{361}a^{21}-\frac{1}{361}a^{20}+\frac{9}{19}a^{18}+\frac{6}{19}a^{17}+\frac{6}{19}a^{16}-\frac{134}{361}a^{15}+\frac{1}{19}a^{14}-\frac{1}{19}a^{13}-\frac{172}{361}a^{12}+\frac{138}{361}a^{11}+\frac{91}{361}a^{10}+\frac{53}{361}a^{9}+\frac{68}{361}a^{8}+\frac{18}{361}a^{7}-\frac{86}{361}a^{6}+\frac{159}{361}a^{5}-\frac{149}{361}a^{4}-\frac{25}{361}a^{3}-\frac{56}{361}a^{2}+\frac{3}{19}a$, $\frac{1}{361}a^{34}-\frac{4}{361}a^{30}-\frac{5}{361}a^{29}+\frac{1}{361}a^{28}+\frac{1}{361}a^{27}-\frac{1}{361}a^{26}+\frac{9}{361}a^{25}+\frac{8}{361}a^{24}-\frac{8}{361}a^{23}+\frac{7}{361}a^{22}+\frac{3}{361}a^{21}+\frac{7}{361}a^{20}+\frac{3}{19}a^{18}+\frac{6}{19}a^{17}-\frac{39}{361}a^{16}+\frac{9}{19}a^{15}+\frac{6}{19}a^{14}-\frac{2}{19}a^{13}-\frac{34}{361}a^{12}-\frac{90}{361}a^{11}+\frac{132}{361}a^{10}+\frac{151}{361}a^{9}+\frac{96}{361}a^{8}+\frac{10}{361}a^{7}-\frac{160}{361}a^{6}-\frac{30}{361}a^{5}+\frac{50}{361}a^{4}-\frac{98}{361}a^{3}+\frac{126}{361}a^{2}+\frac{9}{19}a$, $\frac{1}{361}a^{35}-\frac{9}{361}a^{30}-\frac{1}{361}a^{29}-\frac{6}{361}a^{28}+\frac{8}{361}a^{27}-\frac{2}{361}a^{26}-\frac{7}{361}a^{25}+\frac{8}{361}a^{24}+\frac{8}{361}a^{23}-\frac{1}{361}a^{22}-\frac{9}{361}a^{21}-\frac{9}{361}a^{20}-\frac{1}{19}a^{18}-\frac{39}{361}a^{17}+\frac{8}{19}a^{16}-\frac{7}{19}a^{15}+\frac{8}{19}a^{14}+\frac{8}{19}a^{13}-\frac{124}{361}a^{12}+\frac{172}{361}a^{11}-\frac{146}{361}a^{10}+\frac{144}{361}a^{9}+\frac{78}{361}a^{8}+\frac{121}{361}a^{7}+\frac{87}{361}a^{6}-\frac{46}{361}a^{5}-\frac{37}{361}a^{4}-\frac{67}{361}a^{3}-\frac{124}{361}a^{2}+\frac{3}{19}a$, $\frac{1}{361}a^{36}+\frac{9}{361}a^{30}-\frac{1}{361}a^{29}-\frac{3}{361}a^{28}+\frac{4}{361}a^{27}-\frac{8}{361}a^{26}-\frac{2}{361}a^{25}+\frac{6}{361}a^{24}+\frac{6}{361}a^{23}+\frac{1}{361}a^{22}-\frac{7}{361}a^{21}-\frac{6}{361}a^{20}+\frac{113}{361}a^{18}+\frac{8}{19}a^{17}+\frac{5}{19}a^{16}-\frac{7}{19}a^{15}+\frac{2}{19}a^{14}+\frac{6}{19}a^{13}-\frac{104}{361}a^{12}+\frac{115}{361}a^{11}-\frac{168}{361}a^{10}+\frac{110}{361}a^{9}+\frac{160}{361}a^{8}+\frac{154}{361}a^{7}+\frac{165}{361}a^{6}+\frac{13}{361}a^{5}-\frac{39}{361}a^{4}-\frac{145}{361}a^{3}+\frac{101}{361}a^{2}-\frac{1}{19}a$, $\frac{1}{361}a^{37}+\frac{8}{361}a^{30}-\frac{8}{361}a^{29}-\frac{4}{361}a^{28}+\frac{5}{361}a^{27}-\frac{1}{361}a^{26}-\frac{3}{361}a^{25}+\frac{8}{361}a^{24}-\frac{6}{361}a^{23}+\frac{2}{361}a^{22}-\frac{8}{361}a^{21}+\frac{6}{361}a^{20}-\frac{1}{361}a^{19}+\frac{5}{19}a^{17}-\frac{2}{19}a^{15}-\frac{7}{19}a^{14}+\frac{1}{19}a^{13}+\frac{11}{361}a^{12}-\frac{68}{361}a^{11}+\frac{80}{361}a^{10}+\frac{109}{361}a^{9}+\frac{115}{361}a^{8}+\frac{117}{361}a^{7}+\frac{163}{361}a^{6}-\frac{89}{361}a^{5}+\frac{169}{361}a^{4}+\frac{122}{361}a^{3}-\frac{63}{361}a^{2}+\frac{6}{19}a$, $\frac{1}{6859}a^{38}+\frac{5}{6859}a^{37}-\frac{5}{6859}a^{36}+\frac{4}{6859}a^{35}-\frac{5}{6859}a^{34}-\frac{1}{6859}a^{33}-\frac{8}{6859}a^{32}+\frac{1}{6859}a^{31}-\frac{163}{6859}a^{30}-\frac{1}{6859}a^{29}-\frac{115}{6859}a^{28}+\frac{77}{6859}a^{27}+\frac{173}{6859}a^{26}+\frac{91}{6859}a^{25}-\frac{7}{361}a^{24}+\frac{68}{6859}a^{23}-\frac{30}{6859}a^{22}+\frac{174}{6859}a^{21}-\frac{134}{6859}a^{20}-\frac{119}{6859}a^{19}-\frac{1857}{6859}a^{18}-\frac{726}{6859}a^{17}-\frac{793}{6859}a^{16}-\frac{2260}{6859}a^{15}+\frac{445}{6859}a^{14}+\frac{626}{6859}a^{13}+\frac{3260}{6859}a^{12}-\frac{1728}{6859}a^{11}-\frac{2849}{6859}a^{10}+\frac{854}{6859}a^{9}+\frac{2639}{6859}a^{8}-\frac{851}{6859}a^{7}-\frac{144}{361}a^{6}-\frac{1151}{6859}a^{5}-\frac{2231}{6859}a^{4}-\frac{3005}{6859}a^{3}-\frac{141}{361}a^{2}+\frac{2}{19}a$, $\frac{1}{6859}a^{39}+\frac{8}{6859}a^{37}-\frac{9}{6859}a^{36}-\frac{6}{6859}a^{35}+\frac{5}{6859}a^{34}-\frac{3}{6859}a^{33}+\frac{3}{6859}a^{32}+\frac{3}{6859}a^{31}-\frac{155}{6859}a^{30}+\frac{61}{6859}a^{29}-\frac{108}{6859}a^{28}+\frac{92}{6859}a^{27}+\frac{62}{6859}a^{26}+\frac{134}{6859}a^{25}+\frac{68}{6859}a^{24}-\frac{180}{6859}a^{23}-\frac{132}{6859}a^{22}-\frac{92}{6859}a^{21}+\frac{7}{361}a^{20}+\frac{144}{6859}a^{19}-\frac{3316}{6859}a^{18}+\frac{1374}{6859}a^{17}+\frac{1724}{6859}a^{16}+\frac{1276}{6859}a^{15}+\frac{605}{6859}a^{14}+\frac{3208}{6859}a^{13}+\frac{991}{6859}a^{12}-\frac{2683}{6859}a^{11}-\frac{1108}{6859}a^{10}-\frac{2296}{6859}a^{9}-\frac{1886}{6859}a^{8}+\frac{1880}{6859}a^{7}+\frac{920}{6859}a^{6}+\frac{446}{6859}a^{5}+\frac{3191}{6859}a^{4}+\frac{2409}{6859}a^{3}+\frac{24}{361}a^{2}+\frac{7}{19}a$, $\frac{1}{6859}a^{40}+\frac{8}{6859}a^{37}-\frac{4}{6859}a^{36}-\frac{8}{6859}a^{35}-\frac{1}{6859}a^{34}-\frac{8}{6859}a^{33}-\frac{9}{6859}a^{32}+\frac{8}{6859}a^{31}-\frac{60}{6859}a^{30}+\frac{14}{6859}a^{29}+\frac{62}{6859}a^{28}+\frac{130}{6859}a^{27}+\frac{42}{6859}a^{26}-\frac{14}{6859}a^{25}+\frac{48}{6859}a^{24}-\frac{106}{6859}a^{23}-\frac{156}{6859}a^{22}+\frac{109}{6859}a^{21}-\frac{1}{361}a^{20}+\frac{106}{6859}a^{19}-\frac{2143}{6859}a^{18}+\frac{293}{6859}a^{17}+\frac{1882}{6859}a^{16}-\frac{2956}{6859}a^{15}+\frac{85}{6859}a^{14}-\frac{939}{6859}a^{13}+\frac{1903}{6859}a^{12}-\frac{2199}{6859}a^{11}+\frac{508}{6859}a^{10}+\frac{1067}{6859}a^{9}-\frac{1391}{6859}a^{8}+\frac{2389}{6859}a^{7}-\frac{2100}{6859}a^{6}-\frac{1528}{6859}a^{5}+\frac{1067}{6859}a^{4}-\frac{698}{6859}a^{3}-\frac{118}{361}a^{2}+\frac{5}{19}a$, $\frac{1}{6878015143969}a^{41}+\frac{435859134}{6878015143969}a^{40}+\frac{85763745}{6878015143969}a^{39}+\frac{45050261}{6878015143969}a^{38}+\frac{7927350419}{6878015143969}a^{37}-\frac{237177735}{6878015143969}a^{36}+\frac{1113788179}{6878015143969}a^{35}-\frac{275569336}{362000797051}a^{34}-\frac{9214885919}{6878015143969}a^{33}-\frac{433674781}{362000797051}a^{32}-\frac{1326333093}{6878015143969}a^{31}-\frac{56832712826}{6878015143969}a^{30}+\frac{89881617977}{6878015143969}a^{29}-\frac{46926275052}{6878015143969}a^{28}-\frac{61062312690}{6878015143969}a^{27}-\frac{137765568174}{6878015143969}a^{26}+\frac{140250252658}{6878015143969}a^{25}+\frac{43312967627}{6878015143969}a^{24}+\frac{141123855759}{6878015143969}a^{23}+\frac{62011859918}{6878015143969}a^{22}+\frac{67626050954}{6878015143969}a^{21}-\frac{133575666681}{6878015143969}a^{20}-\frac{58182045108}{6878015143969}a^{19}-\frac{1935685410316}{6878015143969}a^{18}-\frac{2332798217041}{6878015143969}a^{17}+\frac{123022095597}{362000797051}a^{16}-\frac{2625605664946}{6878015143969}a^{15}-\frac{12945019894}{362000797051}a^{14}+\frac{120576757677}{6878015143969}a^{13}-\frac{652815817980}{6878015143969}a^{12}+\frac{1790924808256}{6878015143969}a^{11}-\frac{2054956186096}{6878015143969}a^{10}-\frac{616489071502}{6878015143969}a^{9}+\frac{411196198431}{6878015143969}a^{8}-\frac{82126745323}{6878015143969}a^{7}+\frac{1651430747875}{6878015143969}a^{6}-\frac{1126766198333}{6878015143969}a^{5}+\frac{1834872080832}{6878015143969}a^{4}-\frac{89062323636}{362000797051}a^{3}+\frac{4698337468}{19052673529}a^{2}+\frac{74528819}{1002772291}a-\frac{1693977}{52777489}$, $\frac{1}{45\!\cdots\!83}a^{42}+\frac{16\!\cdots\!31}{45\!\cdots\!83}a^{41}+\frac{17\!\cdots\!46}{45\!\cdots\!83}a^{40}-\frac{21\!\cdots\!15}{45\!\cdots\!83}a^{39}-\frac{30\!\cdots\!12}{45\!\cdots\!83}a^{38}+\frac{37\!\cdots\!43}{45\!\cdots\!83}a^{37}+\frac{24\!\cdots\!48}{45\!\cdots\!83}a^{36}+\frac{56\!\cdots\!76}{45\!\cdots\!83}a^{35}-\frac{47\!\cdots\!72}{45\!\cdots\!83}a^{34}-\frac{49\!\cdots\!96}{45\!\cdots\!83}a^{33}+\frac{14\!\cdots\!98}{45\!\cdots\!83}a^{32}-\frac{45\!\cdots\!99}{45\!\cdots\!83}a^{31}-\frac{41\!\cdots\!40}{24\!\cdots\!57}a^{30}-\frac{12\!\cdots\!62}{45\!\cdots\!83}a^{29}-\frac{36\!\cdots\!63}{45\!\cdots\!83}a^{28}-\frac{37\!\cdots\!85}{45\!\cdots\!83}a^{27}+\frac{64\!\cdots\!37}{45\!\cdots\!83}a^{26}+\frac{11\!\cdots\!66}{45\!\cdots\!83}a^{25}+\frac{11\!\cdots\!05}{45\!\cdots\!83}a^{24}+\frac{11\!\cdots\!07}{45\!\cdots\!83}a^{23}-\frac{28\!\cdots\!81}{45\!\cdots\!83}a^{22}-\frac{18\!\cdots\!63}{45\!\cdots\!83}a^{21}-\frac{81\!\cdots\!11}{45\!\cdots\!83}a^{20}+\frac{10\!\cdots\!64}{45\!\cdots\!83}a^{19}-\frac{11\!\cdots\!70}{45\!\cdots\!83}a^{18}+\frac{21\!\cdots\!59}{45\!\cdots\!83}a^{17}-\frac{15\!\cdots\!18}{45\!\cdots\!83}a^{16}+\frac{21\!\cdots\!30}{45\!\cdots\!83}a^{15}-\frac{19\!\cdots\!85}{45\!\cdots\!83}a^{14}+\frac{12\!\cdots\!67}{45\!\cdots\!83}a^{13}-\frac{89\!\cdots\!23}{24\!\cdots\!57}a^{12}+\frac{15\!\cdots\!91}{45\!\cdots\!83}a^{11}-\frac{22\!\cdots\!57}{45\!\cdots\!83}a^{10}+\frac{84\!\cdots\!77}{45\!\cdots\!83}a^{9}-\frac{22\!\cdots\!80}{45\!\cdots\!83}a^{8}+\frac{69\!\cdots\!43}{45\!\cdots\!83}a^{7}+\frac{20\!\cdots\!20}{45\!\cdots\!83}a^{6}-\frac{43\!\cdots\!25}{45\!\cdots\!83}a^{5}-\frac{18\!\cdots\!79}{45\!\cdots\!83}a^{4}-\frac{29\!\cdots\!99}{24\!\cdots\!57}a^{3}+\frac{27\!\cdots\!24}{12\!\cdots\!03}a^{2}-\frac{24\!\cdots\!89}{66\!\cdots\!37}a-\frac{16\!\cdots\!80}{35\!\cdots\!23}$
not computed
sage: K.class_group().invariants()
sage: UK = K.unit_group()
magma: UK, fUK := UnitGroup(K);
oscar: UK, fUK = unit_group(OK)
Rank: | | $42$
|
|
Torsion generator: | |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
|
Fundamental units: | | not computed
| sage: UK.fundamental_units()
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
|
Regulator: | | not computed
|
|
\[
\begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{43}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{162686032778208990102858628859785420567496242104134005559503199497609643882923419981647276367075859293620549051195773051892887390454194801}}\cr\mathstrut & \text{
some values not computed }
\end{aligned}\]
# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^43 - 903*x^41 - 645*x^40 + 358276*x^39 + 487362*x^38 - 82668446*x^37 - 161379172*x^36 + 12386889944*x^35 + 31035129471*x^34 - 1275092913940*x^33 - 3868686195114*x^32 + 93052767268909*x^31 + 330473143424644*x^30 - 4897798025442393*x^29 - 19967338988758228*x^28 + 187329847291648022*x^27 + 869728040966016241*x^26 - 5201925841676982029*x^25 - 27621776964130665961*x^24 + 103748981858304966660*x^23 + 643326429466437698421*x^22 - 1445787294046167541816*x^21 - 10999588529245966977339*x^20 + 13140703542377826450494*x^19 + 137573117593988043652238*x^18 - 60838518194479293931722*x^17 - 1247516677692517201034941*x^16 - 134666416459554320685647*x^15 + 8070410654031859605939559*x^14 + 4203376282667672263555078*x^13 - 36228120784944419229616219*x^12 - 30515963297503545387850753*x^11 + 107534691527795878017440861*x^10 + 119306453339061961678830425*x^9 - 192818992256047972290970619*x^8 - 263326021640166500214931210*x^7 + 170563929616560831037152772*x^6 + 294222510747058121054570076*x^5 - 33622183448420036732904682*x^4 - 118832831442545361067982885*x^3 - 7933826886293481520543865*x^2 + 14571491290875996179048369*x + 2572343484535669027372727) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
# self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^43 - 903*x^41 - 645*x^40 + 358276*x^39 + 487362*x^38 - 82668446*x^37 - 161379172*x^36 + 12386889944*x^35 + 31035129471*x^34 - 1275092913940*x^33 - 3868686195114*x^32 + 93052767268909*x^31 + 330473143424644*x^30 - 4897798025442393*x^29 - 19967338988758228*x^28 + 187329847291648022*x^27 + 869728040966016241*x^26 - 5201925841676982029*x^25 - 27621776964130665961*x^24 + 103748981858304966660*x^23 + 643326429466437698421*x^22 - 1445787294046167541816*x^21 - 10999588529245966977339*x^20 + 13140703542377826450494*x^19 + 137573117593988043652238*x^18 - 60838518194479293931722*x^17 - 1247516677692517201034941*x^16 - 134666416459554320685647*x^15 + 8070410654031859605939559*x^14 + 4203376282667672263555078*x^13 - 36228120784944419229616219*x^12 - 30515963297503545387850753*x^11 + 107534691527795878017440861*x^10 + 119306453339061961678830425*x^9 - 192818992256047972290970619*x^8 - 263326021640166500214931210*x^7 + 170563929616560831037152772*x^6 + 294222510747058121054570076*x^5 - 33622183448420036732904682*x^4 - 118832831442545361067982885*x^3 - 7933826886293481520543865*x^2 + 14571491290875996179048369*x + 2572343484535669027372727, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^43 - 903*x^41 - 645*x^40 + 358276*x^39 + 487362*x^38 - 82668446*x^37 - 161379172*x^36 + 12386889944*x^35 + 31035129471*x^34 - 1275092913940*x^33 - 3868686195114*x^32 + 93052767268909*x^31 + 330473143424644*x^30 - 4897798025442393*x^29 - 19967338988758228*x^28 + 187329847291648022*x^27 + 869728040966016241*x^26 - 5201925841676982029*x^25 - 27621776964130665961*x^24 + 103748981858304966660*x^23 + 643326429466437698421*x^22 - 1445787294046167541816*x^21 - 10999588529245966977339*x^20 + 13140703542377826450494*x^19 + 137573117593988043652238*x^18 - 60838518194479293931722*x^17 - 1247516677692517201034941*x^16 - 134666416459554320685647*x^15 + 8070410654031859605939559*x^14 + 4203376282667672263555078*x^13 - 36228120784944419229616219*x^12 - 30515963297503545387850753*x^11 + 107534691527795878017440861*x^10 + 119306453339061961678830425*x^9 - 192818992256047972290970619*x^8 - 263326021640166500214931210*x^7 + 170563929616560831037152772*x^6 + 294222510747058121054570076*x^5 - 33622183448420036732904682*x^4 - 118832831442545361067982885*x^3 - 7933826886293481520543865*x^2 + 14571491290875996179048369*x + 2572343484535669027372727); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^43 - 903*x^41 - 645*x^40 + 358276*x^39 + 487362*x^38 - 82668446*x^37 - 161379172*x^36 + 12386889944*x^35 + 31035129471*x^34 - 1275092913940*x^33 - 3868686195114*x^32 + 93052767268909*x^31 + 330473143424644*x^30 - 4897798025442393*x^29 - 19967338988758228*x^28 + 187329847291648022*x^27 + 869728040966016241*x^26 - 5201925841676982029*x^25 - 27621776964130665961*x^24 + 103748981858304966660*x^23 + 643326429466437698421*x^22 - 1445787294046167541816*x^21 - 10999588529245966977339*x^20 + 13140703542377826450494*x^19 + 137573117593988043652238*x^18 - 60838518194479293931722*x^17 - 1247516677692517201034941*x^16 - 134666416459554320685647*x^15 + 8070410654031859605939559*x^14 + 4203376282667672263555078*x^13 - 36228120784944419229616219*x^12 - 30515963297503545387850753*x^11 + 107534691527795878017440861*x^10 + 119306453339061961678830425*x^9 - 192818992256047972290970619*x^8 - 263326021640166500214931210*x^7 + 170563929616560831037152772*x^6 + 294222510747058121054570076*x^5 - 33622183448420036732904682*x^4 - 118832831442545361067982885*x^3 - 7933826886293481520543865*x^2 + 14571491290875996179048369*x + 2572343484535669027372727); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
$C_{43}$ (as 43T1):
sage: K.galois_group(type='pari')
magma: G = GaloisGroup(K);
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
The extension is primitive: there are no intermediate fields
between this field and $\Q$.
|
sage: K.subfields()[1:-1]
gp: L = nfsubfields(K); L[2..length(b)]
magma: L := Subfields(K); L[2..#L];
oscar: subfields(K)[2:end-1]
$p$ |
$2$ |
$3$ |
$5$ |
$7$ |
$11$ |
$13$ |
$17$ |
$19$ |
$23$ |
$29$ |
$31$ |
$37$ |
$41$ |
$43$ |
$47$ |
$53$ |
$59$ |
Cycle type |
$43$ |
$43$ |
$43$ |
$43$ |
$43$ |
$43$ |
$43$ |
${\href{/padicField/19.1.0.1}{1} }^{43}$ |
$43$ |
$43$ |
$43$ |
$43$ |
$43$ |
R |
$43$ |
$43$ |
$43$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
|