Normalized defining polynomial
\( x^{43} - x - 3 \)
Invariants
Degree: | $43$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 21]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-189\!\cdots\!899\) \(\medspace = -\,3^{43}\cdot 3929\cdot 27164077\cdot 1696291894163\cdot 4471934430678427\cdot 71\!\cdots\!89\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(125.75\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | not computed | ||
Ramified primes: | \(3\), \(3929\), \(27164077\), \(1696291894163\), \(4471934430678427\), \(71408\!\cdots\!98589\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-17343\!\cdots\!47411}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $21$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{21}\cdot R \cdot h}{2\cdot\sqrt{1897738149546498357511630934614335915196820327679981380134385490248583145691162007028057899}}\cr\mathstrut & \text{
Galois group
A non-solvable group of order 60415263063373835637355132068513997507264512000000000 |
The 63261 conjugacy class representatives for $S_{43}$ are not computed |
Character table for $S_{43}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $38{,}\,{\href{/padicField/2.5.0.1}{5} }$ | R | $18{,}\,{\href{/padicField/5.10.0.1}{10} }{,}\,{\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.5.0.1}{5} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | $29{,}\,{\href{/padicField/7.9.0.1}{9} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | $31{,}\,{\href{/padicField/11.12.0.1}{12} }$ | $36{,}\,{\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | $40{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.13.0.1}{13} }{,}\,{\href{/padicField/19.11.0.1}{11} }^{2}{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $38{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | $34{,}\,{\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | $35{,}\,{\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | $35{,}\,{\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | $21{,}\,17{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | $43$ | $26{,}\,16{,}\,{\href{/padicField/47.1.0.1}{1} }$ | $38{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | $35{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
3.3.4.1 | $x^{3} + 6 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
Deg $18$ | $3$ | $6$ | $18$ | ||||
Deg $18$ | $3$ | $6$ | $18$ | ||||
\(3929\) | $\Q_{3929}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{3929}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $33$ | $1$ | $33$ | $0$ | $C_{33}$ | $[\ ]^{33}$ | ||
\(27164077\) | $\Q_{27164077}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{27164077}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $16$ | $1$ | $16$ | $0$ | $C_{16}$ | $[\ ]^{16}$ | ||
Deg $18$ | $1$ | $18$ | $0$ | $C_{18}$ | $[\ ]^{18}$ | ||
\(1696291894163\) | $\Q_{1696291894163}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{1696291894163}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | ||
Deg $13$ | $1$ | $13$ | $0$ | $C_{13}$ | $[\ ]^{13}$ | ||
\(4471934430678427\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | ||
Deg $21$ | $1$ | $21$ | $0$ | $C_{21}$ | $[\ ]^{21}$ | ||
\(714\!\cdots\!589\) | $\Q_{71\!\cdots\!89}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $13$ | $1$ | $13$ | $0$ | $C_{13}$ | $[\ ]^{13}$ | ||
Deg $23$ | $1$ | $23$ | $0$ | $C_{23}$ | $[\ ]^{23}$ |