Normalized defining polynomial
\( x^{43} + 5x - 2 \)
Invariants
Degree: | $43$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 21]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-426\!\cdots\!432\) \(\medspace = -\,2^{43}\cdot 48\!\cdots\!29\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(186.41\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | not computed | ||
Ramified primes: | \(2\), \(48509\!\cdots\!62329\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-97019\!\cdots\!24658}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $\frac{1}{2}a^{42}-\frac{1}{2}a^{41}-\frac{1}{2}a^{40}-\frac{1}{2}a^{39}-\frac{1}{2}a^{38}-\frac{1}{2}a^{37}-\frac{1}{2}a^{36}-\frac{1}{2}a^{35}-\frac{1}{2}a^{34}-\frac{1}{2}a^{33}-\frac{1}{2}a^{32}-\frac{1}{2}a^{31}-\frac{1}{2}a^{30}-\frac{1}{2}a^{29}-\frac{1}{2}a^{28}-\frac{1}{2}a^{27}-\frac{1}{2}a^{26}-\frac{1}{2}a^{25}-\frac{1}{2}a^{24}-\frac{1}{2}a^{23}-\frac{1}{2}a^{22}-\frac{1}{2}a^{21}-\frac{1}{2}a^{20}-\frac{1}{2}a^{19}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $21$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{21}\cdot R \cdot h}{2\cdot\sqrt{42669778834265525646357377125943811028661226892061887227006364333992726275526826083130013680402432}}\cr\mathstrut & \text{
Galois group
A non-solvable group of order 60415263063373835637355132068513997507264512000000000 |
The 63261 conjugacy class representatives for $S_{43}$ are not computed |
Character table for $S_{43}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $37{,}\,{\href{/padicField/3.6.0.1}{6} }$ | $42{,}\,{\href{/padicField/5.1.0.1}{1} }$ | $24{,}\,{\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | $22{,}\,17{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/13.11.0.1}{11} }{,}\,{\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/padicField/17.11.0.1}{11} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | $22{,}\,{\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $20{,}\,19{,}\,{\href{/padicField/23.4.0.1}{4} }$ | $15{,}\,{\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | $39{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | $22{,}\,{\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | $34{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | $21^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | $17{,}\,15{,}\,{\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ | $19{,}\,18{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | $27{,}\,15{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.4.4.4 | $x^{4} - 2 x^{3} + 4 x^{2} + 12 x + 12$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
2.6.6.1 | $x^{6} + 6 x^{5} + 34 x^{4} + 80 x^{3} + 204 x^{2} + 216 x + 216$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
2.6.6.4 | $x^{6} - 4 x^{5} + 14 x^{4} - 24 x^{3} + 100 x^{2} + 48 x + 88$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
2.12.12.14 | $x^{12} - 6 x^{11} + 36 x^{10} - 164 x^{9} + 660 x^{8} - 2352 x^{7} + 6720 x^{6} - 15584 x^{5} + 28656 x^{4} - 41056 x^{3} + 48320 x^{2} - 37696 x + 22720$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
2.12.12.21 | $x^{12} + 16 x^{11} + 88 x^{10} + 24 x^{9} - 1308 x^{8} - 4288 x^{7} - 736 x^{6} + 26176 x^{5} + 68592 x^{4} + 77696 x^{3} + 42752 x^{2} + 13440 x + 4544$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
\(485\!\cdots\!329\) | $\Q_{48\!\cdots\!29}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{48\!\cdots\!29}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | ||
Deg $18$ | $1$ | $18$ | $0$ | $C_{18}$ | $[\ ]^{18}$ |