Normalized defining polynomial
\( x^{43} + 5 x - 2 \)
Invariants
| Degree: | $43$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 21]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-42669778834265525646357377125943811028661226892061887227006364333992726275526826083130013680402432=-\,2^{43}\cdot 4850992221948391221116864599701308523965647838401979155037948241214590584096052462329\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $186.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 4850992221948391221116864599701308523965647838401979155037948241214590584096052462329$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $\frac{1}{2} a^{42} - \frac{1}{2} a^{41} - \frac{1}{2} a^{40} - \frac{1}{2} a^{39} - \frac{1}{2} a^{38} - \frac{1}{2} a^{37} - \frac{1}{2} a^{36} - \frac{1}{2} a^{35} - \frac{1}{2} a^{34} - \frac{1}{2} a^{33} - \frac{1}{2} a^{32} - \frac{1}{2} a^{31} - \frac{1}{2} a^{30} - \frac{1}{2} a^{29} - \frac{1}{2} a^{28} - \frac{1}{2} a^{27} - \frac{1}{2} a^{26} - \frac{1}{2} a^{25} - \frac{1}{2} a^{24} - \frac{1}{2} a^{23} - \frac{1}{2} a^{22} - \frac{1}{2} a^{21} - \frac{1}{2} a^{20} - \frac{1}{2} a^{19} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$
Class group and class number
Not computed
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{43}$ (as 43T10):
| A non-solvable group of order 60415263063373835637355132068513997507264512000000000 |
| The 63261 conjugacy class representatives for $S_{43}$ are not computed |
| Character table for $S_{43}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $37{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | $42{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $24{,}\,{\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $22{,}\,17{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/13.11.0.1}{11} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/17.11.0.1}{11} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $22{,}\,{\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $20{,}\,19{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | $15{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $39{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | $22{,}\,{\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $34{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $17{,}\,15{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | $19{,}\,18{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $27{,}\,15{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.12.12.14 | $x^{12} + 4 x^{10} + 21 x^{8} - 16 x^{6} + 43 x^{4} + 12 x^{2} - 1$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| 2.12.12.21 | $x^{12} + 44 x^{10} + 45 x^{8} - 48 x^{6} + 59 x^{4} - 60 x^{2} + 23$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| 4850992221948391221116864599701308523965647838401979155037948241214590584096052462329 | Data not computed | ||||||