Normalized defining polynomial
\( x^{43} - x - 1 \)
Invariants
Degree: | $43$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 21]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-17193642429484970947547009316647777700494014568443353175841873665979443\) \(\medspace = -\,109\cdot 809\cdot 397519523\cdot 49\!\cdots\!61\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(42.99\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $109^{1/2}809^{1/2}397519523^{1/2}490494801020731074863763714627948664201245545640512874061^{1/2}\approx 1.3112453023551685e+35$ | ||
Ramified primes: | \(109\), \(809\), \(397519523\), \(49049\!\cdots\!74061\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-17193\!\cdots\!79443}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $21$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{21}\cdot R \cdot h}{2\cdot\sqrt{17193642429484970947547009316647777700494014568443353175841873665979443}}\cr\mathstrut & \text{
Galois group
A non-solvable group of order 60415263063373835637355132068513997507264512000000000 |
The 63261 conjugacy class representatives for $S_{43}$ are not computed |
Character table for $S_{43}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $38{,}\,{\href{/padicField/2.5.0.1}{5} }$ | $37{,}\,{\href{/padicField/3.6.0.1}{6} }$ | $17^{2}{,}\,{\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | $29{,}\,{\href{/padicField/7.9.0.1}{9} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.14.0.1}{14} }{,}\,{\href{/padicField/11.13.0.1}{13} }{,}\,{\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | $36{,}\,{\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | $21{,}\,{\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | $26{,}\,{\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $41{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.13.0.1}{13} }{,}\,{\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | $26{,}\,{\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | $42{,}\,{\href{/padicField/37.1.0.1}{1} }$ | $38{,}\,{\href{/padicField/41.5.0.1}{5} }$ | $43$ | $17{,}\,15{,}\,{\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ | $31{,}\,{\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | $42{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(109\) | $\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
109.2.1.1 | $x^{2} + 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
109.2.0.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
109.4.0.1 | $x^{4} + 11 x^{2} + 98 x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
109.4.0.1 | $x^{4} + 11 x^{2} + 98 x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
Deg $30$ | $1$ | $30$ | $0$ | $C_{30}$ | $[\ ]^{30}$ | ||
\(809\) | $\Q_{809}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $13$ | $1$ | $13$ | $0$ | $C_{13}$ | $[\ ]^{13}$ | ||
Deg $16$ | $1$ | $16$ | $0$ | $C_{16}$ | $[\ ]^{16}$ | ||
\(397519523\) | $\Q_{397519523}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $40$ | $1$ | $40$ | $0$ | $C_{40}$ | $[\ ]^{40}$ | ||
\(490\!\cdots\!061\) | $\Q_{49\!\cdots\!61}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $11$ | $1$ | $11$ | $0$ | $C_{11}$ | $[\ ]^{11}$ | ||
Deg $29$ | $1$ | $29$ | $0$ | $C_{29}$ | $[\ ]^{29}$ |