Properties

Label 12.0.34162868224000000.2
Degree $12$
Signature $[0, 6]$
Discriminant $3.416\times 10^{16}$
Root discriminant \(23.87\)
Ramified primes $2,5,19$
Class number $2$
Class group [2]
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 10*x^10 + 17*x^8 + 42*x^6 + 46*x^4 - 8*x^2 + 1)
 
gp: K = bnfinit(y^12 - 10*y^10 + 17*y^8 + 42*y^6 + 46*y^4 - 8*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 10*x^10 + 17*x^8 + 42*x^6 + 46*x^4 - 8*x^2 + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 10*x^10 + 17*x^8 + 42*x^6 + 46*x^4 - 8*x^2 + 1)
 

\( x^{12} - 10x^{10} + 17x^{8} + 42x^{6} + 46x^{4} - 8x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(34162868224000000\) \(\medspace = 2^{24}\cdot 5^{6}\cdot 19^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(23.87\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}5^{1/2}19^{2/3}\approx 63.686501757102$
Ramified primes:   \(2\), \(5\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{524}a^{10}+\frac{27}{131}a^{8}-\frac{1}{4}a^{7}+\frac{27}{262}a^{6}+\frac{1}{4}a^{5}+\frac{63}{262}a^{4}-\frac{151}{524}a^{2}-\frac{1}{4}a-\frac{141}{524}$, $\frac{1}{524}a^{11}-\frac{23}{524}a^{9}-\frac{77}{524}a^{7}-\frac{1}{4}a^{6}-\frac{34}{131}a^{5}+\frac{1}{4}a^{4}+\frac{121}{262}a^{3}+\frac{121}{524}a-\frac{1}{4}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{50}{131} a^{11} - \frac{495}{131} a^{9} + \frac{1601}{262} a^{7} + \frac{4347}{262} a^{5} + \frac{2537}{131} a^{3} - \frac{83}{262} a \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{5}{131}a^{10}-\frac{99}{262}a^{8}+\frac{147}{262}a^{6}+\frac{237}{131}a^{4}+\frac{717}{262}a^{2}-\frac{50}{131}$, $\frac{21}{262}a^{10}-\frac{221}{262}a^{8}+\frac{479}{262}a^{6}+\frac{275}{131}a^{4}+\frac{445}{131}a^{2}-\frac{79}{262}$, $\frac{831}{524}a^{11}-\frac{68}{131}a^{10}-\frac{2060}{131}a^{9}+\frac{2719}{524}a^{8}+\frac{6717}{262}a^{7}-\frac{4601}{524}a^{6}+\frac{18031}{262}a^{5}-\frac{5739}{262}a^{4}+\frac{41151}{524}a^{3}-\frac{12769}{524}a^{2}-\frac{3463}{524}a+\frac{967}{262}$, $\frac{32}{131}a^{11}-\frac{45}{262}a^{10}-\frac{1241}{524}a^{9}+\frac{891}{524}a^{8}+\frac{1803}{524}a^{7}-\frac{727}{262}a^{6}+\frac{2955}{262}a^{5}-\frac{3873}{524}a^{4}+\frac{7527}{524}a^{3}-\frac{4095}{524}a^{2}+\frac{539}{262}a+\frac{507}{524}$, $\frac{20}{131}a^{11}-\frac{73}{524}a^{10}-\frac{198}{131}a^{9}+\frac{381}{262}a^{8}+\frac{1307}{524}a^{7}-\frac{396}{131}a^{6}+\frac{3137}{524}a^{5}-\frac{1193}{262}a^{4}+\frac{1303}{131}a^{3}-\frac{1815}{524}a^{2}-\frac{145}{524}a+\frac{337}{524}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1054.7017720420233 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1054.7017720420233 \cdot 2}{4\cdot\sqrt{34162868224000000}}\cr\approx \mathstrut & 0.175550361164461 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 10*x^10 + 17*x^8 + 42*x^6 + 46*x^4 - 8*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 10*x^10 + 17*x^8 + 42*x^6 + 46*x^4 - 8*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 10*x^10 + 17*x^8 + 42*x^6 + 46*x^4 - 8*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 10*x^10 + 17*x^8 + 42*x^6 + 46*x^4 - 8*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{10}) \), \(\Q(i, \sqrt{10})\), 6.0.23104000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 36
Degree 18 siblings: deg 18, 18.0.37133262473195501387776000000.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}$ R ${\href{/padicField/7.6.0.1}{6} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }^{2}$ ${\href{/padicField/13.3.0.1}{3} }^{4}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ R ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{6}$ ${\href{/padicField/37.3.0.1}{3} }^{4}$ ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}$ ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{6}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.24.315$x^{12} - 8 x^{11} + 78 x^{10} + 76 x^{9} - 30 x^{8} + 720 x^{7} + 1200 x^{6} + 1248 x^{5} + 2676 x^{4} + 3712 x^{3} + 3448 x^{2} + 2160 x + 4072$$4$$3$$24$$C_6\times C_2$$[2, 3]^{3}$
\(5\) Copy content Toggle raw display 5.6.3.2$x^{6} + 75 x^{2} - 375$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.2$x^{6} + 75 x^{2} - 375$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(19\) Copy content Toggle raw display 19.6.0.1$x^{6} + 17 x^{3} + 17 x^{2} + 6 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
19.6.4.1$x^{6} + 304 x^{3} - 5415$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.40.2t1.a.a$1$ $ 2^{3} \cdot 5 $ \(\Q(\sqrt{10}) \) $C_2$ (as 2T1) $1$ $1$
* 1.40.2t1.b.a$1$ $ 2^{3} \cdot 5 $ \(\Q(\sqrt{-10}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
1.76.6t1.a.a$1$ $ 2^{2} \cdot 19 $ 6.0.8340544.1 $C_6$ (as 6T1) $0$ $-1$
1.760.6t1.a.a$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.6.8340544000.1 $C_6$ (as 6T1) $0$ $1$
1.760.6t1.a.b$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.6.8340544000.1 $C_6$ (as 6T1) $0$ $1$
1.760.6t1.b.a$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.8340544000.3 $C_6$ (as 6T1) $0$ $-1$
1.19.3t1.a.a$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
1.76.6t1.a.b$1$ $ 2^{2} \cdot 19 $ 6.0.8340544.1 $C_6$ (as 6T1) $0$ $-1$
1.19.3t1.a.b$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
1.760.6t1.b.b$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.8340544000.3 $C_6$ (as 6T1) $0$ $-1$
2.14440.3t2.a.a$2$ $ 2^{3} \cdot 5 \cdot 19^{2}$ 3.1.14440.1 $S_3$ (as 3T2) $1$ $0$
2.57760.6t3.c.a$2$ $ 2^{5} \cdot 5 \cdot 19^{2}$ 6.2.33362176000.17 $D_{6}$ (as 6T3) $1$ $0$
* 2.3040.12t18.b.a$2$ $ 2^{5} \cdot 5 \cdot 19 $ 12.0.34162868224000000.2 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.760.6t5.a.a$2$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.23104000.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.3040.12t18.b.b$2$ $ 2^{5} \cdot 5 \cdot 19 $ 12.0.34162868224000000.2 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.760.6t5.a.b$2$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.23104000.1 $S_3\times C_3$ (as 6T5) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.