Properties

Label 5.3.2.3a1.1
Base Q5\Q_{5}
Degree 66
e 22
f 33
c 33
Galois group C6C_6 (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

(x3+3x+3)2+5x( x^{3} + 3 x + 3 )^{2} + 5 x Copy content Toggle raw display

Invariants

Base field: Q5\Q_{5}
Degree dd: 66
Ramification index ee: 22
Residue field degree ff: 33
Discriminant exponent cc: 33
Discriminant root field: Q5(52)\Q_{5}(\sqrt{5\cdot 2})
Root number: 1-1
Aut(K/Q5)\Aut(K/\Q_{5}) ==Gal(K/Q5)\Gal(K/\Q_{5}): C6C_6
This field is Galois and abelian over Q5.\Q_{5}.
Visible Artin slopes:[ ][\ ]
Visible Swan slopes:[ ][\ ]
Means: \langle\ \rangle
Rams:( )(\ )
Jump set:undefined
Roots of unity:124=(531)124 = (5^{ 3 } - 1)

Intermediate fields

Q5(52)\Q_{5}(\sqrt{5\cdot 2}), 5.3.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:5.3.1.0a1.1 Q5(t)\cong \Q_{5}(t) where tt is a root of x3+3x+3 x^{3} + 3 x + 3 Copy content Toggle raw display
Relative Eisenstein polynomial: x2+5t x^{2} + 5 t  Q5(t)[x]\ \in\Q_{5}(t)[x] Copy content Toggle raw display

Ramification polygon

Residual polynomials:z+2z + 2
Associated inertia:11
Indices of inseparability:[0][0]

Invariants of the Galois closure

Galois degree: 66
Galois group: C6C_6 (as 6T1)
Inertia group: Intransitive group isomorphic to C2C_2
Wild inertia group: C1C_1
Galois unramified degree: 33
Galois tame degree: 22
Galois Artin slopes: [ ][\ ]
Galois Swan slopes: [ ][\ ]
Galois mean slope: 0.50.5
Galois splitting model:x6x5+8x48x3+22x222x+29x^{6} - x^{5} + 8 x^{4} - 8 x^{3} + 22 x^{2} - 22 x + 29