Show commands:
Magma
magma: G := TransitiveGroup(6, 1);
Group action invariants
Degree $n$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $1$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_6$ | ||
CHM label: | $C(6) = 6 = 3[x]2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $6$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{6}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{3}$ | $1$ | $2$ | $3$ | $(1,4)(2,5)(3,6)$ |
3A1 | $3^{2}$ | $1$ | $3$ | $4$ | $(1,3,5)(2,4,6)$ |
3A-1 | $3^{2}$ | $1$ | $3$ | $4$ | $(1,5,3)(2,6,4)$ |
6A1 | $6$ | $1$ | $6$ | $5$ | $(1,2,3,4,5,6)$ |
6A-1 | $6$ | $1$ | $6$ | $5$ | $(1,6,5,4,3,2)$ |
magma: ConjugacyClasses(G);
Malle's constant $a(G)$: $1/3$
Group invariants
Order: | $6=2 \cdot 3$ | magma: Order(G);
| |
Cyclic: | yes | magma: IsCyclic(G);
| |
Abelian: | yes | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $1$ | ||
Label: | 6.2 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | ||
Size | 1 | 1 | 1 | 1 | 1 | 1 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | |
3 P | 1A | 2A | 1A | 1A | 2A | 2A | |
Type | |||||||
6.2.1a | R | ||||||
6.2.1b | R | ||||||
6.2.1c1 | C | ||||||
6.2.1c2 | C | ||||||
6.2.1d1 | C | ||||||
6.2.1d2 | C |
magma: CharacterTable(G);