Show commands:
Magma
magma: G := TransitiveGroup(6, 1);
Group action invariants
Degree $n$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $1$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_6$ | ||
CHM label: | $C(6) = 6 = 3[x]2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $1$ | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $6$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 6 $ | $1$ | $6$ | $(1,2,3,4,5,6)$ |
$ 3, 3 $ | $1$ | $3$ | $(1,3,5)(2,4,6)$ |
$ 2, 2, 2 $ | $1$ | $2$ | $(1,4)(2,5)(3,6)$ |
$ 3, 3 $ | $1$ | $3$ | $(1,5,3)(2,6,4)$ |
$ 6 $ | $1$ | $6$ | $(1,6,5,4,3,2)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $6=2 \cdot 3$ | magma: Order(G);
| |
Cyclic: | yes | magma: IsCyclic(G);
| |
Abelian: | yes | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 6.2 | magma: IdentifyGroup(G);
|
Character table: |
2 1 1 1 1 1 1 3 1 1 1 1 1 1 1a 6a 3a 2a 3b 6b X.1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 -1 X.3 1 A /A 1 A /A X.4 1 -A /A -1 A -/A X.5 1 /A A 1 /A A X.6 1 -/A A -1 /A -A A = E(3)^2 = (-1-Sqrt(-3))/2 = -1-b3 |
magma: CharacterTable(G);