Properties

Label 6T1
Degree $6$
Order $6$
Cyclic yes
Abelian yes
Solvable yes
Primitive no
$p$-group no
Group: $C_6$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(6, 1);
 

Group action invariants

Degree $n$:  $6$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $1$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_6$
CHM label:   $C(6) = 6 = 3[x]2$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $6$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,3,4,5,6)
magma: Generators(G);
 

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $C_3$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrder IndexRepresentative
1A $1^{6}$ $1$ $1$ $0$ $()$
2A $2^{3}$ $1$ $2$ $3$ $(1,4)(2,5)(3,6)$
3A1 $3^{2}$ $1$ $3$ $4$ $(1,3,5)(2,4,6)$
3A-1 $3^{2}$ $1$ $3$ $4$ $(1,5,3)(2,6,4)$
6A1 $6$ $1$ $6$ $5$ $(1,2,3,4,5,6)$
6A-1 $6$ $1$ $6$ $5$ $(1,6,5,4,3,2)$

magma: ConjugacyClasses(G);
 

Malle's constant $a(G)$:     $1/3$

Group invariants

Order:  $6=2 \cdot 3$
magma: Order(G);
 
Cyclic:  yes
magma: IsCyclic(G);
 
Abelian:  yes
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:  $1$
Label:  6.2
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A1 3A-1 6A1 6A-1
Size 1 1 1 1 1 1
2 P 1A 1A 3A-1 3A1 3A1 3A-1
3 P 1A 2A 1A 1A 2A 2A
Type
6.2.1a R 1 1 1 1 1 1
6.2.1b R 1 1 1 1 1 1
6.2.1c1 C 1 1 ζ31 ζ3 ζ3 ζ31
6.2.1c2 C 1 1 ζ3 ζ31 ζ31 ζ3
6.2.1d1 C 1 1 ζ31 ζ3 ζ3 ζ31
6.2.1d2 C 1 1 ζ3 ζ31 ζ31 ζ3

magma: CharacterTable(G);