Properties

Label 1.760.6t1.b.b
Dimension $1$
Group $C_6$
Conductor $760$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(760\)\(\medspace = 2^{3} \cdot 5 \cdot 19 \)
Artin field: Galois closure of 6.0.8340544000.3
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{760}(539,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + 19x^{4} - 14x^{3} + 342x^{2} - 584x + 2849 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 6 a + 29 + \left(a + 11\right)\cdot 31 + \left(a + 27\right)\cdot 31^{2} + \left(11 a + 20\right)\cdot 31^{3} + \left(21 a + 19\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 25 a + 22 + 29 a\cdot 31 + \left(29 a + 22\right)\cdot 31^{2} + \left(19 a + 11\right)\cdot 31^{3} + \left(9 a + 9\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 a + 6 + \left(a + 20\right)\cdot 31 + \left(a + 27\right)\cdot 31^{2} + \left(11 a + 18\right)\cdot 31^{3} + \left(21 a + 1\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 6 a + 10 + \left(a + 4\right)\cdot 31 + \left(a + 21\right)\cdot 31^{2} + \left(11 a + 21\right)\cdot 31^{3} + \left(21 a + 8\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 25 a + 10 + \left(29 a + 8\right)\cdot 31 + \left(29 a + 28\right)\cdot 31^{2} + \left(19 a + 10\right)\cdot 31^{3} + \left(9 a + 20\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 25 a + 18 + \left(29 a + 16\right)\cdot 31 + \left(29 a + 28\right)\cdot 31^{2} + \left(19 a + 8\right)\cdot 31^{3} + \left(9 a + 2\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,4)(3,6)$
$(1,6,4,5,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,4)(3,6)$$-1$
$1$$3$$(1,4,3)(2,6,5)$$-\zeta_{3} - 1$
$1$$3$$(1,3,4)(2,5,6)$$\zeta_{3}$
$1$$6$$(1,6,4,5,3,2)$$-\zeta_{3}$
$1$$6$$(1,2,3,5,4,6)$$\zeta_{3} + 1$

The blue line marks the conjugacy class containing complex conjugation.