Normalized defining polynomial
\( x^{18} - 11x^{16} + 50x^{14} - 44x^{12} - 395x^{10} + 549x^{8} + 1449x^{6} + 581x^{4} + 35x^{2} + 1 \)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-37133262473195501387776000000\) \(\medspace = -\,2^{30}\cdot 5^{6}\cdot 19^{12}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(38.66\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2}5^{1/2}19^{2/3}\approx 63.686501757102$ | ||
Ramified primes: | \(2\), \(5\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
$\card{ \Aut(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{7}+\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{2}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{8}+\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{2}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{828141712}a^{16}+\frac{5138849}{207035428}a^{14}+\frac{2115063}{414070856}a^{12}-\frac{9836385}{414070856}a^{10}-\frac{196198185}{828141712}a^{8}-\frac{87938569}{414070856}a^{6}+\frac{403688355}{828141712}a^{4}+\frac{70114745}{414070856}a^{2}-\frac{108016327}{828141712}$, $\frac{1}{828141712}a^{17}+\frac{5138849}{207035428}a^{15}+\frac{2115063}{414070856}a^{13}-\frac{9836385}{414070856}a^{11}-\frac{196198185}{828141712}a^{9}-\frac{87938569}{414070856}a^{7}+\frac{403688355}{828141712}a^{5}+\frac{70114745}{414070856}a^{3}-\frac{108016327}{828141712}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( \frac{205675}{2540312} a^{17} - \frac{278255}{317539} a^{15} + \frac{4934709}{1270156} a^{13} - \frac{3534245}{1270156} a^{11} - \frac{83644899}{2540312} a^{9} + \frac{49860575}{1270156} a^{7} + \frac{322287861}{2540312} a^{5} + \frac{81320401}{1270156} a^{3} + \frac{16407311}{2540312} a \) (order $4$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{125536809}{828141712}a^{17}-\frac{338497465}{207035428}a^{15}+\frac{2983754803}{414070856}a^{13}-\frac{2012924793}{414070856}a^{11}-\frac{51508001009}{828141712}a^{9}+\frac{29622903355}{414070856}a^{7}+\frac{201347509579}{828141712}a^{5}+\frac{51285728205}{414070856}a^{3}+\frac{6303467921}{828141712}a$, $\frac{58486759}{828141712}a^{17}-\frac{157075205}{207035428}a^{15}+\frac{1375039669}{414070856}a^{13}-\frac{860760923}{414070856}a^{11}-\frac{24239763935}{828141712}a^{9}+\frac{13368355905}{414070856}a^{7}+\frac{96281666893}{828141712}a^{5}+\frac{24775277479}{414070856}a^{3}+\frac{126542823}{828141712}a$, $\frac{52065231}{828141712}a^{16}-\frac{146465271}{207035428}a^{14}+\frac{1376911061}{414070856}a^{12}-\frac{1505934875}{414070856}a^{10}-\frac{19697796471}{828141712}a^{8}+\frac{16768323929}{414070856}a^{6}+\frac{65956497093}{828141712}a^{4}+\frac{7257980471}{414070856}a^{2}+\frac{442614647}{828141712}$, $\frac{4418851}{103517714}a^{16}-\frac{99093467}{207035428}a^{14}+\frac{464570777}{207035428}a^{12}-\frac{506750407}{207035428}a^{10}-\frac{3285466343}{207035428}a^{8}+\frac{1346680970}{51758857}a^{6}+\frac{5605321863}{103517714}a^{4}+\frac{4017966805}{207035428}a^{2}+\frac{181478941}{207035428}$, $\frac{114570063}{51758857}a^{17}+\frac{66245931}{207035428}a^{16}-\frac{2534982355}{103517714}a^{15}-\frac{363108821}{103517714}a^{14}+\frac{11615737425}{103517714}a^{13}+\frac{1642411657}{103517714}a^{12}-\frac{21604678765}{207035428}a^{11}-\frac{2788518161}{207035428}a^{10}-\frac{89886554385}{103517714}a^{9}-\frac{13143052523}{103517714}a^{8}+\frac{263065460913}{207035428}a^{7}+\frac{35396261229}{207035428}a^{6}+\frac{648246996511}{207035428}a^{5}+\frac{97468219369}{207035428}a^{4}+\frac{223922658829}{207035428}a^{3}+\frac{20934236473}{103517714}a^{2}-\frac{165269167}{51758857}a+\frac{779205938}{51758857}$, $\frac{1215121305}{828141712}a^{17}+\frac{2288512}{51758857}a^{16}-\frac{3354315955}{207035428}a^{15}-\frac{25567983}{51758857}a^{14}+\frac{30659408339}{414070856}a^{13}+\frac{474521495}{207035428}a^{12}-\frac{28021489883}{414070856}a^{11}-\frac{118910501}{51758857}a^{10}-\frac{477567983213}{828141712}a^{9}-\frac{3577197659}{207035428}a^{8}+\frac{343454148013}{414070856}a^{7}+\frac{5696234853}{207035428}a^{6}+\frac{1732103665459}{828141712}a^{5}+\frac{12555501311}{207035428}a^{4}+\frac{317232133193}{414070856}a^{3}+\frac{673788054}{51758857}a^{2}+\frac{14228869413}{828141712}a-\frac{431076541}{103517714}$, $\frac{948227595}{828141712}a^{16}-\frac{2622173803}{207035428}a^{14}+\frac{24024313729}{414070856}a^{12}-\frac{22309691383}{414070856}a^{10}-\frac{372003880187}{828141712}a^{8}+\frac{271637460317}{414070856}a^{6}+\frac{1342394978273}{828141712}a^{4}+\frac{234731197535}{414070856}a^{2}+\frac{2700268107}{828141712}$, $\frac{14947726863}{828141712}a^{17}+\frac{703119575}{103517714}a^{16}-\frac{41062238535}{207035428}a^{15}-\frac{3886067116}{51758857}a^{14}+\frac{372626889591}{414070856}a^{13}+\frac{35537700389}{103517714}a^{12}-\frac{323639647659}{414070856}a^{11}-\frac{16287848135}{51758857}a^{10}-\frac{5917918472471}{828141712}a^{9}-\frac{553673454217}{207035428}a^{8}+\frac{4066723977987}{414070856}a^{7}+\frac{199750493011}{51758857}a^{6}+\frac{21811601030301}{828141712}a^{5}+\frac{2013877939331}{207035428}a^{4}+\frac{4486007640465}{414070856}a^{3}+\frac{738791739247}{207035428}a^{2}+\frac{581577214611}{828141712}a+\frac{18123666849}{207035428}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 7210682.545838993 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 7210682.545838993 \cdot 1}{4\cdot\sqrt{37133262473195501387776000000}}\cr\approx \mathstrut & 0.142775485668223 \end{aligned}\] (assuming GRH)
Galois group
$C_6\times S_3$ (as 18T6):
A solvable group of order 36 |
The 18 conjugacy class representatives for $S_3 \times C_6$ |
Character table for $S_3 \times C_6$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), 3.3.361.1, 3.1.14440.1, 6.0.3336217600.4, 6.0.8340544.1, 9.3.3010936384000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Degree 12 sibling: | 12.0.34162868224000000.2 |
Degree 18 sibling: | deg 18 |
Minimal sibling: | 12.0.34162868224000000.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{3}$ | R | ${\href{/padicField/7.6.0.1}{6} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/23.6.0.1}{6} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{9}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.3.0.1}{3} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
2.12.24.315 | $x^{12} - 8 x^{11} + 78 x^{10} + 76 x^{9} - 30 x^{8} + 720 x^{7} + 1200 x^{6} + 1248 x^{5} + 2676 x^{4} + 3712 x^{3} + 3448 x^{2} + 2160 x + 4072$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ | |
\(5\) | 5.3.0.1 | $x^{3} + 3 x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
5.3.0.1 | $x^{3} + 3 x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
5.6.3.2 | $x^{6} + 75 x^{2} - 375$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
5.6.3.2 | $x^{6} + 75 x^{2} - 375$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
\(19\) | 19.18.12.1 | $x^{18} + 1938 x^{16} + 165 x^{15} + 1564986 x^{14} + 217074 x^{13} + 673956770 x^{12} + 124220751 x^{11} + 163260541175 x^{10} + 40698676942 x^{9} + 21101810097561 x^{8} + 7872565858164 x^{7} + 1139107203476720 x^{6} + 760256762812749 x^{5} + 441034593923007 x^{4} + 19443033036221259 x^{3} + 22753074450170540 x^{2} + 9283251966890258 x + 2743830934025437$ | $3$ | $6$ | $12$ | $C_6 \times C_3$ | $[\ ]_{3}^{6}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.40.2t1.a.a | $1$ | $ 2^{3} \cdot 5 $ | \(\Q(\sqrt{10}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
1.40.2t1.b.a | $1$ | $ 2^{3} \cdot 5 $ | \(\Q(\sqrt{-10}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.76.6t1.a.a | $1$ | $ 2^{2} \cdot 19 $ | 6.0.8340544.1 | $C_6$ (as 6T1) | $0$ | $-1$ |
1.760.6t1.a.a | $1$ | $ 2^{3} \cdot 5 \cdot 19 $ | 6.6.8340544000.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.760.6t1.a.b | $1$ | $ 2^{3} \cdot 5 \cdot 19 $ | 6.6.8340544000.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.760.6t1.b.a | $1$ | $ 2^{3} \cdot 5 \cdot 19 $ | 6.0.8340544000.3 | $C_6$ (as 6T1) | $0$ | $-1$ | |
* | 1.76.6t1.a.b | $1$ | $ 2^{2} \cdot 19 $ | 6.0.8340544.1 | $C_6$ (as 6T1) | $0$ | $-1$ |
1.760.6t1.b.b | $1$ | $ 2^{3} \cdot 5 \cdot 19 $ | 6.0.8340544000.3 | $C_6$ (as 6T1) | $0$ | $-1$ | |
* | 1.19.3t1.a.a | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.19.3t1.a.b | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 2.14440.3t2.a.a | $2$ | $ 2^{3} \cdot 5 \cdot 19^{2}$ | 3.1.14440.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.57760.6t3.c.a | $2$ | $ 2^{5} \cdot 5 \cdot 19^{2}$ | 6.2.33362176000.17 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.760.6t5.a.a | $2$ | $ 2^{3} \cdot 5 \cdot 19 $ | 6.0.23104000.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.760.6t5.a.b | $2$ | $ 2^{3} \cdot 5 \cdot 19 $ | 6.0.23104000.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.3040.12t18.a.a | $2$ | $ 2^{5} \cdot 5 \cdot 19 $ | 18.0.37133262473195501387776000000.1 | $S_3 \times C_6$ (as 18T6) | $0$ | $0$ |
* | 2.3040.12t18.a.b | $2$ | $ 2^{5} \cdot 5 \cdot 19 $ | 18.0.37133262473195501387776000000.1 | $S_3 \times C_6$ (as 18T6) | $0$ | $0$ |