Basic invariants
Dimension: | $1$ |
Group: | $C_6$ |
Conductor: | \(760\)\(\medspace = 2^{3} \cdot 5 \cdot 19 \) |
Artin field: | Galois closure of 6.6.8340544000.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6$ |
Parity: | even |
Dirichlet character: | \(\chi_{760}(429,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - 2x^{5} - 41x^{4} + 66x^{3} + 302x^{2} + 16x - 151 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: \( x^{2} + 6x + 3 \)
Roots:
$r_{ 1 }$ | $=$ | \( 5 a + 4 + 2 a\cdot 7 + \left(3 a + 4\right)\cdot 7^{2} + 2 a\cdot 7^{3} + 5 a\cdot 7^{4} + \left(3 a + 6\right)\cdot 7^{5} +O(7^{6})\) |
$r_{ 2 }$ | $=$ | \( 2 a + 6 + \left(4 a + 4\right)\cdot 7 + \left(3 a + 3\right)\cdot 7^{2} + 4 a\cdot 7^{3} + \left(a + 4\right)\cdot 7^{4} + 3 a\cdot 7^{5} +O(7^{6})\) |
$r_{ 3 }$ | $=$ | \( 2 a + 4 + 4 a\cdot 7 + \left(3 a + 3\right)\cdot 7^{2} + \left(4 a + 5\right)\cdot 7^{3} + a\cdot 7^{4} + \left(3 a + 3\right)\cdot 7^{5} +O(7^{6})\) |
$r_{ 4 }$ | $=$ | \( 2 a + 2 + \left(4 a + 5\right)\cdot 7 + \left(3 a + 4\right)\cdot 7^{2} + \left(4 a + 6\right)\cdot 7^{3} + \left(a + 2\right)\cdot 7^{4} + \left(3 a + 4\right)\cdot 7^{5} +O(7^{6})\) |
$r_{ 5 }$ | $=$ | \( 5 a + 1 + 2 a\cdot 7 + \left(3 a + 3\right)\cdot 7^{2} + \left(2 a + 1\right)\cdot 7^{3} + \left(5 a + 1\right)\cdot 7^{4} + \left(3 a + 2\right)\cdot 7^{5} +O(7^{6})\) |
$r_{ 6 }$ | $=$ | \( 5 a + 6 + \left(2 a + 2\right)\cdot 7 + \left(3 a + 2\right)\cdot 7^{2} + \left(2 a + 6\right)\cdot 7^{3} + \left(5 a + 4\right)\cdot 7^{4} + \left(3 a + 4\right)\cdot 7^{5} +O(7^{6})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-1$ |
$1$ | $3$ | $(1,5,6)(2,3,4)$ | $\zeta_{3}$ |
$1$ | $3$ | $(1,6,5)(2,4,3)$ | $-\zeta_{3} - 1$ |
$1$ | $6$ | $(1,3,5,4,6,2)$ | $\zeta_{3} + 1$ |
$1$ | $6$ | $(1,2,6,4,5,3)$ | $-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.