Properties

Label 2.760.6t5.a.b
Dimension $2$
Group $S_3\times C_3$
Conductor $760$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3\times C_3$
Conductor: \(760\)\(\medspace = 2^{3} \cdot 5 \cdot 19 \)
Artin stem field: Galois closure of 6.0.23104000.1
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Determinant: 1.760.6t1.b.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.14440.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + 7x^{4} - 14x^{3} + 12x^{2} - 4x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 14 a + 7 + \left(11 a + 25\right)\cdot 31 + \left(25 a + 4\right)\cdot 31^{2} + \left(5 a + 16\right)\cdot 31^{3} + \left(19 a + 3\right)\cdot 31^{4} + \left(7 a + 15\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( a + 27 + \left(4 a + 8\right)\cdot 31 + \left(12 a + 17\right)\cdot 31^{2} + \left(27 a + 16\right)\cdot 31^{3} + \left(12 a + 25\right)\cdot 31^{4} + \left(2 a + 12\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 19 a + 26 + \left(8 a + 20\right)\cdot 31 + \left(14 a + 15\right)\cdot 31^{2} + \left(20 a + 1\right)\cdot 31^{3} + 27 a\cdot 31^{4} + \left(20 a + 2\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 30 a + 29 + \left(26 a + 15\right)\cdot 31 + \left(18 a + 6\right)\cdot 31^{2} + \left(3 a + 28\right)\cdot 31^{3} + \left(18 a + 23\right)\cdot 31^{4} + \left(28 a + 4\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 a + 2 + \left(22 a + 19\right)\cdot 31 + \left(16 a + 4\right)\cdot 31^{2} + \left(10 a + 28\right)\cdot 31^{3} + \left(3 a + 3\right)\cdot 31^{4} + \left(10 a + 16\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 17 a + 4 + \left(19 a + 3\right)\cdot 31 + \left(5 a + 13\right)\cdot 31^{2} + \left(25 a + 2\right)\cdot 31^{3} + \left(11 a + 5\right)\cdot 31^{4} + \left(23 a + 11\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,4)(3,5)$
$(2,3,6)$
$(1,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,6)(2,4)(3,5)$$0$
$1$$3$$(1,4,5)(2,3,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,5,4)(2,6,3)$$2 \zeta_{3}$
$2$$3$$(1,5,4)$$\zeta_{3} + 1$
$2$$3$$(1,4,5)$$-\zeta_{3}$
$2$$3$$(1,5,4)(2,3,6)$$-1$
$3$$6$$(1,2,4,3,5,6)$$0$
$3$$6$$(1,6,5,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.