Basic invariants
Dimension: | $2$ |
Group: | $S_3\times C_3$ |
Conductor: | \(760\)\(\medspace = 2^{3} \cdot 5 \cdot 19 \) |
Artin stem field: | Galois closure of 6.0.23104000.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $S_3\times C_3$ |
Parity: | odd |
Determinant: | 1.760.6t1.b.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.14440.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - 2x^{5} + 7x^{4} - 14x^{3} + 12x^{2} - 4x + 1 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \)
Roots:
$r_{ 1 }$ | $=$ | \( 14 a + 7 + \left(11 a + 25\right)\cdot 31 + \left(25 a + 4\right)\cdot 31^{2} + \left(5 a + 16\right)\cdot 31^{3} + \left(19 a + 3\right)\cdot 31^{4} + \left(7 a + 15\right)\cdot 31^{5} +O(31^{6})\) |
$r_{ 2 }$ | $=$ | \( a + 27 + \left(4 a + 8\right)\cdot 31 + \left(12 a + 17\right)\cdot 31^{2} + \left(27 a + 16\right)\cdot 31^{3} + \left(12 a + 25\right)\cdot 31^{4} + \left(2 a + 12\right)\cdot 31^{5} +O(31^{6})\) |
$r_{ 3 }$ | $=$ | \( 19 a + 26 + \left(8 a + 20\right)\cdot 31 + \left(14 a + 15\right)\cdot 31^{2} + \left(20 a + 1\right)\cdot 31^{3} + 27 a\cdot 31^{4} + \left(20 a + 2\right)\cdot 31^{5} +O(31^{6})\) |
$r_{ 4 }$ | $=$ | \( 30 a + 29 + \left(26 a + 15\right)\cdot 31 + \left(18 a + 6\right)\cdot 31^{2} + \left(3 a + 28\right)\cdot 31^{3} + \left(18 a + 23\right)\cdot 31^{4} + \left(28 a + 4\right)\cdot 31^{5} +O(31^{6})\) |
$r_{ 5 }$ | $=$ | \( 12 a + 2 + \left(22 a + 19\right)\cdot 31 + \left(16 a + 4\right)\cdot 31^{2} + \left(10 a + 28\right)\cdot 31^{3} + \left(3 a + 3\right)\cdot 31^{4} + \left(10 a + 16\right)\cdot 31^{5} +O(31^{6})\) |
$r_{ 6 }$ | $=$ | \( 17 a + 4 + \left(19 a + 3\right)\cdot 31 + \left(5 a + 13\right)\cdot 31^{2} + \left(25 a + 2\right)\cdot 31^{3} + \left(11 a + 5\right)\cdot 31^{4} + \left(23 a + 11\right)\cdot 31^{5} +O(31^{6})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$3$ | $2$ | $(1,6)(2,4)(3,5)$ | $0$ |
$1$ | $3$ | $(1,4,5)(2,3,6)$ | $-2 \zeta_{3} - 2$ |
$1$ | $3$ | $(1,5,4)(2,6,3)$ | $2 \zeta_{3}$ |
$2$ | $3$ | $(1,5,4)$ | $\zeta_{3} + 1$ |
$2$ | $3$ | $(1,4,5)$ | $-\zeta_{3}$ |
$2$ | $3$ | $(1,5,4)(2,3,6)$ | $-1$ |
$3$ | $6$ | $(1,2,4,3,5,6)$ | $0$ |
$3$ | $6$ | $(1,6,5,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.