Properties

Label 2.57760.6t3.c.a
Dimension $2$
Group $D_{6}$
Conductor $57760$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(57760\)\(\medspace = 2^{5} \cdot 5 \cdot 19^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.33362176000.17
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.40.2t1.b.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.14440.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} - 41x^{4} + 104x^{3} + 264x^{2} + 928x + 96 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 8.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 26 + 18\cdot 31 + 3\cdot 31^{2} + 21\cdot 31^{3} + 3\cdot 31^{4} + 31^{5} + 5\cdot 31^{6} + 18\cdot 31^{7} +O(31^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 a + 5 + 25\cdot 31 + \left(5 a + 9\right)\cdot 31^{2} + \left(8 a + 11\right)\cdot 31^{3} + 12\cdot 31^{4} + \left(24 a + 24\right)\cdot 31^{5} + \left(2 a + 6\right)\cdot 31^{6} + \left(20 a + 4\right)\cdot 31^{7} +O(31^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 26 a + 15 + \left(30 a + 20\right)\cdot 31 + \left(25 a + 19\right)\cdot 31^{2} + \left(22 a + 22\right)\cdot 31^{3} + \left(30 a + 4\right)\cdot 31^{4} + \left(6 a + 10\right)\cdot 31^{5} + \left(28 a + 19\right)\cdot 31^{6} + \left(10 a + 10\right)\cdot 31^{7} +O(31^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 a + 8 + 20\cdot 31 + \left(5 a + 5\right)\cdot 31^{2} + \left(8 a + 25\right)\cdot 31^{3} + 31^{4} + \left(24 a + 15\right)\cdot 31^{5} + \left(2 a + 6\right)\cdot 31^{6} + 20 a\cdot 31^{7} +O(31^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 23 + 23\cdot 31 + 7\cdot 31^{2} + 7\cdot 31^{3} + 14\cdot 31^{4} + 10\cdot 31^{5} + 5\cdot 31^{6} + 22\cdot 31^{7} +O(31^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 26 a + 18 + \left(30 a + 15\right)\cdot 31 + \left(25 a + 15\right)\cdot 31^{2} + \left(22 a + 5\right)\cdot 31^{3} + \left(30 a + 25\right)\cdot 31^{4} + 6 a\cdot 31^{5} + \left(28 a + 19\right)\cdot 31^{6} + \left(10 a + 6\right)\cdot 31^{7} +O(31^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,6)$$-2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$3$$2$$(1,6)(3,5)$$0$
$2$$3$$(1,4,6)(2,3,5)$$-1$
$2$$6$$(1,3,4,5,6,2)$$1$

The blue line marks the conjugacy class containing complex conjugation.