Properties

Label 961.2.c.a.521.1
Level $961$
Weight $2$
Character 961.521
Analytic conductor $7.674$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,-2,4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 521.1
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 961.521
Dual form 961.2.c.a.439.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.41421 q^{2} +(-1.20711 - 2.09077i) q^{3} +3.82843 q^{4} +(-0.500000 + 0.866025i) q^{5} +(2.91421 + 5.04757i) q^{6} +(-1.20711 - 2.09077i) q^{7} -4.41421 q^{8} +(-1.41421 + 2.44949i) q^{9} +(1.20711 - 2.09077i) q^{10} +(-2.62132 + 4.54026i) q^{11} +(-4.62132 - 8.00436i) q^{12} +(0.914214 - 1.58346i) q^{13} +(2.91421 + 5.04757i) q^{14} +2.41421 q^{15} +3.00000 q^{16} +(-0.0857864 - 0.148586i) q^{17} +(3.41421 - 5.91359i) q^{18} +(-0.792893 - 1.37333i) q^{19} +(-1.91421 + 3.31552i) q^{20} +(-2.91421 + 5.04757i) q^{21} +(6.32843 - 10.9612i) q^{22} +4.00000 q^{23} +(5.32843 + 9.22911i) q^{24} +(2.00000 + 3.46410i) q^{25} +(-2.20711 + 3.82282i) q^{26} -0.414214 q^{27} +(-4.62132 - 8.00436i) q^{28} +1.17157 q^{29} -5.82843 q^{30} +1.58579 q^{32} +12.6569 q^{33} +(0.207107 + 0.358719i) q^{34} +2.41421 q^{35} +(-5.41421 + 9.37769i) q^{36} +(0.500000 + 0.866025i) q^{37} +(1.91421 + 3.31552i) q^{38} -4.41421 q^{39} +(2.20711 - 3.82282i) q^{40} +(-4.74264 + 8.21449i) q^{41} +(7.03553 - 12.1859i) q^{42} +(4.44975 + 7.70719i) q^{43} +(-10.0355 + 17.3821i) q^{44} +(-1.41421 - 2.44949i) q^{45} -9.65685 q^{46} -1.65685 q^{47} +(-3.62132 - 6.27231i) q^{48} +(0.585786 - 1.01461i) q^{49} +(-4.82843 - 8.36308i) q^{50} +(-0.207107 + 0.358719i) q^{51} +(3.50000 - 6.06218i) q^{52} +(0.0857864 - 0.148586i) q^{53} +1.00000 q^{54} +(-2.62132 - 4.54026i) q^{55} +(5.32843 + 9.22911i) q^{56} +(-1.91421 + 3.31552i) q^{57} -2.82843 q^{58} +(5.03553 + 8.72180i) q^{59} +9.24264 q^{60} -2.82843 q^{61} +6.82843 q^{63} -9.82843 q^{64} +(0.914214 + 1.58346i) q^{65} -30.5563 q^{66} +(2.62132 - 4.54026i) q^{67} +(-0.328427 - 0.568852i) q^{68} +(-4.82843 - 8.36308i) q^{69} -5.82843 q^{70} +(7.03553 - 12.1859i) q^{71} +(6.24264 - 10.8126i) q^{72} +(1.91421 - 3.31552i) q^{73} +(-1.20711 - 2.09077i) q^{74} +(4.82843 - 8.36308i) q^{75} +(-3.03553 - 5.25770i) q^{76} +12.6569 q^{77} +10.6569 q^{78} +(-7.62132 - 13.2005i) q^{79} +(-1.50000 + 2.59808i) q^{80} +(4.74264 + 8.21449i) q^{81} +(11.4497 - 19.8315i) q^{82} +(2.03553 - 3.52565i) q^{83} +(-11.1569 + 19.3242i) q^{84} +0.171573 q^{85} +(-10.7426 - 18.6068i) q^{86} +(-1.41421 - 2.44949i) q^{87} +(11.5711 - 20.0417i) q^{88} +12.4853 q^{89} +(3.41421 + 5.91359i) q^{90} -4.41421 q^{91} +15.3137 q^{92} +4.00000 q^{94} +1.58579 q^{95} +(-1.91421 - 3.31552i) q^{96} +10.8284 q^{97} +(-1.41421 + 2.44949i) q^{98} +(-7.41421 - 12.8418i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 2 q^{3} + 4 q^{4} - 2 q^{5} + 6 q^{6} - 2 q^{7} - 12 q^{8} + 2 q^{10} - 2 q^{11} - 10 q^{12} - 2 q^{13} + 6 q^{14} + 4 q^{15} + 12 q^{16} - 6 q^{17} + 8 q^{18} - 6 q^{19} - 2 q^{20} - 6 q^{21}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.41421 −1.70711 −0.853553 0.521005i \(-0.825557\pi\)
−0.853553 + 0.521005i \(0.825557\pi\)
\(3\) −1.20711 2.09077i −0.696923 1.20711i −0.969528 0.244981i \(-0.921218\pi\)
0.272605 0.962126i \(-0.412115\pi\)
\(4\) 3.82843 1.91421
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) 2.91421 + 5.04757i 1.18972 + 2.06066i
\(7\) −1.20711 2.09077i −0.456243 0.790237i 0.542515 0.840046i \(-0.317472\pi\)
−0.998759 + 0.0498090i \(0.984139\pi\)
\(8\) −4.41421 −1.56066
\(9\) −1.41421 + 2.44949i −0.471405 + 0.816497i
\(10\) 1.20711 2.09077i 0.381721 0.661160i
\(11\) −2.62132 + 4.54026i −0.790358 + 1.36894i 0.135388 + 0.990793i \(0.456772\pi\)
−0.925745 + 0.378147i \(0.876561\pi\)
\(12\) −4.62132 8.00436i −1.33406 2.31066i
\(13\) 0.914214 1.58346i 0.253557 0.439174i −0.710945 0.703247i \(-0.751733\pi\)
0.964503 + 0.264073i \(0.0850661\pi\)
\(14\) 2.91421 + 5.04757i 0.778856 + 1.34902i
\(15\) 2.41421 0.623347
\(16\) 3.00000 0.750000
\(17\) −0.0857864 0.148586i −0.0208063 0.0360375i 0.855435 0.517911i \(-0.173290\pi\)
−0.876241 + 0.481873i \(0.839957\pi\)
\(18\) 3.41421 5.91359i 0.804738 1.39385i
\(19\) −0.792893 1.37333i −0.181902 0.315064i 0.760626 0.649190i \(-0.224892\pi\)
−0.942528 + 0.334126i \(0.891559\pi\)
\(20\) −1.91421 + 3.31552i −0.428031 + 0.741372i
\(21\) −2.91421 + 5.04757i −0.635934 + 1.10147i
\(22\) 6.32843 10.9612i 1.34923 2.33693i
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 5.32843 + 9.22911i 1.08766 + 1.88388i
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) −2.20711 + 3.82282i −0.432849 + 0.749717i
\(27\) −0.414214 −0.0797154
\(28\) −4.62132 8.00436i −0.873347 1.51268i
\(29\) 1.17157 0.217556 0.108778 0.994066i \(-0.465306\pi\)
0.108778 + 0.994066i \(0.465306\pi\)
\(30\) −5.82843 −1.06412
\(31\) 0 0
\(32\) 1.58579 0.280330
\(33\) 12.6569 2.20328
\(34\) 0.207107 + 0.358719i 0.0355185 + 0.0615199i
\(35\) 2.41421 0.408077
\(36\) −5.41421 + 9.37769i −0.902369 + 1.56295i
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 1.91421 + 3.31552i 0.310526 + 0.537848i
\(39\) −4.41421 −0.706840
\(40\) 2.20711 3.82282i 0.348974 0.604441i
\(41\) −4.74264 + 8.21449i −0.740676 + 1.28289i 0.211512 + 0.977375i \(0.432161\pi\)
−0.952188 + 0.305513i \(0.901172\pi\)
\(42\) 7.03553 12.1859i 1.08561 1.88033i
\(43\) 4.44975 + 7.70719i 0.678580 + 1.17534i 0.975409 + 0.220404i \(0.0707377\pi\)
−0.296828 + 0.954931i \(0.595929\pi\)
\(44\) −10.0355 + 17.3821i −1.51291 + 2.62044i
\(45\) −1.41421 2.44949i −0.210819 0.365148i
\(46\) −9.65685 −1.42383
\(47\) −1.65685 −0.241677 −0.120839 0.992672i \(-0.538558\pi\)
−0.120839 + 0.992672i \(0.538558\pi\)
\(48\) −3.62132 6.27231i −0.522693 0.905330i
\(49\) 0.585786 1.01461i 0.0836838 0.144945i
\(50\) −4.82843 8.36308i −0.682843 1.18272i
\(51\) −0.207107 + 0.358719i −0.0290008 + 0.0502308i
\(52\) 3.50000 6.06218i 0.485363 0.840673i
\(53\) 0.0857864 0.148586i 0.0117837 0.0204099i −0.860073 0.510170i \(-0.829582\pi\)
0.871857 + 0.489760i \(0.162916\pi\)
\(54\) 1.00000 0.136083
\(55\) −2.62132 4.54026i −0.353459 0.612209i
\(56\) 5.32843 + 9.22911i 0.712041 + 1.23329i
\(57\) −1.91421 + 3.31552i −0.253544 + 0.439151i
\(58\) −2.82843 −0.371391
\(59\) 5.03553 + 8.72180i 0.655571 + 1.13548i 0.981750 + 0.190174i \(0.0609052\pi\)
−0.326180 + 0.945308i \(0.605761\pi\)
\(60\) 9.24264 1.19322
\(61\) −2.82843 −0.362143 −0.181071 0.983470i \(-0.557957\pi\)
−0.181071 + 0.983470i \(0.557957\pi\)
\(62\) 0 0
\(63\) 6.82843 0.860301
\(64\) −9.82843 −1.22855
\(65\) 0.914214 + 1.58346i 0.113394 + 0.196405i
\(66\) −30.5563 −3.76123
\(67\) 2.62132 4.54026i 0.320245 0.554681i −0.660293 0.751008i \(-0.729568\pi\)
0.980539 + 0.196327i \(0.0629013\pi\)
\(68\) −0.328427 0.568852i −0.0398276 0.0689835i
\(69\) −4.82843 8.36308i −0.581274 1.00680i
\(70\) −5.82843 −0.696630
\(71\) 7.03553 12.1859i 0.834964 1.44620i −0.0590953 0.998252i \(-0.518822\pi\)
0.894060 0.447948i \(-0.147845\pi\)
\(72\) 6.24264 10.8126i 0.735702 1.27427i
\(73\) 1.91421 3.31552i 0.224042 0.388052i −0.731990 0.681316i \(-0.761408\pi\)
0.956032 + 0.293264i \(0.0947415\pi\)
\(74\) −1.20711 2.09077i −0.140323 0.243047i
\(75\) 4.82843 8.36308i 0.557539 0.965685i
\(76\) −3.03553 5.25770i −0.348200 0.603099i
\(77\) 12.6569 1.44238
\(78\) 10.6569 1.20665
\(79\) −7.62132 13.2005i −0.857466 1.48517i −0.874339 0.485316i \(-0.838704\pi\)
0.0168732 0.999858i \(-0.494629\pi\)
\(80\) −1.50000 + 2.59808i −0.167705 + 0.290474i
\(81\) 4.74264 + 8.21449i 0.526960 + 0.912722i
\(82\) 11.4497 19.8315i 1.26441 2.19003i
\(83\) 2.03553 3.52565i 0.223429 0.386990i −0.732418 0.680855i \(-0.761608\pi\)
0.955847 + 0.293865i \(0.0949416\pi\)
\(84\) −11.1569 + 19.3242i −1.21731 + 2.10845i
\(85\) 0.171573 0.0186097
\(86\) −10.7426 18.6068i −1.15841 2.00642i
\(87\) −1.41421 2.44949i −0.151620 0.262613i
\(88\) 11.5711 20.0417i 1.23348 2.13645i
\(89\) 12.4853 1.32344 0.661719 0.749752i \(-0.269827\pi\)
0.661719 + 0.749752i \(0.269827\pi\)
\(90\) 3.41421 + 5.91359i 0.359890 + 0.623347i
\(91\) −4.41421 −0.462735
\(92\) 15.3137 1.59656
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 1.58579 0.162698
\(96\) −1.91421 3.31552i −0.195369 0.338388i
\(97\) 10.8284 1.09946 0.549730 0.835342i \(-0.314731\pi\)
0.549730 + 0.835342i \(0.314731\pi\)
\(98\) −1.41421 + 2.44949i −0.142857 + 0.247436i
\(99\) −7.41421 12.8418i −0.745157 1.29065i
\(100\) 7.65685 + 13.2621i 0.765685 + 1.32621i
\(101\) 8.48528 0.844317 0.422159 0.906522i \(-0.361273\pi\)
0.422159 + 0.906522i \(0.361273\pi\)
\(102\) 0.500000 0.866025i 0.0495074 0.0857493i
\(103\) 6.03553 10.4539i 0.594699 1.03005i −0.398890 0.916999i \(-0.630605\pi\)
0.993589 0.113050i \(-0.0360620\pi\)
\(104\) −4.03553 + 6.98975i −0.395717 + 0.685401i
\(105\) −2.91421 5.04757i −0.284398 0.492592i
\(106\) −0.207107 + 0.358719i −0.0201160 + 0.0348419i
\(107\) −4.79289 8.30153i −0.463346 0.802540i 0.535779 0.844358i \(-0.320018\pi\)
−0.999125 + 0.0418188i \(0.986685\pi\)
\(108\) −1.58579 −0.152592
\(109\) −5.17157 −0.495347 −0.247673 0.968844i \(-0.579666\pi\)
−0.247673 + 0.968844i \(0.579666\pi\)
\(110\) 6.32843 + 10.9612i 0.603392 + 1.04511i
\(111\) 1.20711 2.09077i 0.114574 0.198447i
\(112\) −3.62132 6.27231i −0.342183 0.592678i
\(113\) −2.67157 + 4.62730i −0.251320 + 0.435300i −0.963890 0.266302i \(-0.914198\pi\)
0.712569 + 0.701602i \(0.247531\pi\)
\(114\) 4.62132 8.00436i 0.432826 0.749677i
\(115\) −2.00000 + 3.46410i −0.186501 + 0.323029i
\(116\) 4.48528 0.416448
\(117\) 2.58579 + 4.47871i 0.239056 + 0.414057i
\(118\) −12.1569 21.0563i −1.11913 1.93839i
\(119\) −0.207107 + 0.358719i −0.0189854 + 0.0328838i
\(120\) −10.6569 −0.972833
\(121\) −8.24264 14.2767i −0.749331 1.29788i
\(122\) 6.82843 0.618217
\(123\) 22.8995 2.06478
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) −16.4853 −1.46863
\(127\) −5.44975 9.43924i −0.483587 0.837597i 0.516235 0.856447i \(-0.327333\pi\)
−0.999822 + 0.0188496i \(0.994000\pi\)
\(128\) 20.5563 1.81694
\(129\) 10.7426 18.6068i 0.945837 1.63824i
\(130\) −2.20711 3.82282i −0.193576 0.335284i
\(131\) 2.37868 + 4.11999i 0.207826 + 0.359966i 0.951030 0.309100i \(-0.100028\pi\)
−0.743203 + 0.669066i \(0.766694\pi\)
\(132\) 48.4558 4.21754
\(133\) −1.91421 + 3.31552i −0.165983 + 0.287492i
\(134\) −6.32843 + 10.9612i −0.546693 + 0.946900i
\(135\) 0.207107 0.358719i 0.0178249 0.0308737i
\(136\) 0.378680 + 0.655892i 0.0324715 + 0.0562423i
\(137\) −3.74264 + 6.48244i −0.319755 + 0.553833i −0.980437 0.196834i \(-0.936934\pi\)
0.660681 + 0.750666i \(0.270267\pi\)
\(138\) 11.6569 + 20.1903i 0.992297 + 1.71871i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 9.24264 0.781146
\(141\) 2.00000 + 3.46410i 0.168430 + 0.291730i
\(142\) −16.9853 + 29.4194i −1.42537 + 2.46882i
\(143\) 4.79289 + 8.30153i 0.400802 + 0.694209i
\(144\) −4.24264 + 7.34847i −0.353553 + 0.612372i
\(145\) −0.585786 + 1.01461i −0.0486469 + 0.0842589i
\(146\) −4.62132 + 8.00436i −0.382463 + 0.662446i
\(147\) −2.82843 −0.233285
\(148\) 1.91421 + 3.31552i 0.157347 + 0.272534i
\(149\) −0.500000 0.866025i −0.0409616 0.0709476i 0.844818 0.535054i \(-0.179709\pi\)
−0.885779 + 0.464107i \(0.846375\pi\)
\(150\) −11.6569 + 20.1903i −0.951778 + 1.64853i
\(151\) 17.3137 1.40897 0.704485 0.709719i \(-0.251178\pi\)
0.704485 + 0.709719i \(0.251178\pi\)
\(152\) 3.50000 + 6.06218i 0.283887 + 0.491708i
\(153\) 0.485281 0.0392327
\(154\) −30.5563 −2.46230
\(155\) 0 0
\(156\) −16.8995 −1.35304
\(157\) 14.8284 1.18344 0.591719 0.806145i \(-0.298450\pi\)
0.591719 + 0.806145i \(0.298450\pi\)
\(158\) 18.3995 + 31.8689i 1.46379 + 2.53535i
\(159\) −0.414214 −0.0328493
\(160\) −0.792893 + 1.37333i −0.0626837 + 0.108571i
\(161\) −4.82843 8.36308i −0.380533 0.659103i
\(162\) −11.4497 19.8315i −0.899577 1.55811i
\(163\) −12.9706 −1.01593 −0.507966 0.861377i \(-0.669603\pi\)
−0.507966 + 0.861377i \(0.669603\pi\)
\(164\) −18.1569 + 31.4486i −1.41781 + 2.45572i
\(165\) −6.32843 + 10.9612i −0.492667 + 0.853325i
\(166\) −4.91421 + 8.51167i −0.381417 + 0.660634i
\(167\) −4.27817 7.41002i −0.331055 0.573404i 0.651664 0.758508i \(-0.274071\pi\)
−0.982719 + 0.185104i \(0.940738\pi\)
\(168\) 12.8640 22.2810i 0.992476 1.71902i
\(169\) 4.82843 + 8.36308i 0.371417 + 0.643314i
\(170\) −0.414214 −0.0317687
\(171\) 4.48528 0.342998
\(172\) 17.0355 + 29.5064i 1.29895 + 2.24984i
\(173\) 7.15685 12.3960i 0.544126 0.942453i −0.454536 0.890728i \(-0.650195\pi\)
0.998661 0.0517246i \(-0.0164718\pi\)
\(174\) 3.41421 + 5.91359i 0.258831 + 0.448308i
\(175\) 4.82843 8.36308i 0.364995 0.632190i
\(176\) −7.86396 + 13.6208i −0.592768 + 1.02670i
\(177\) 12.1569 21.0563i 0.913765 1.58269i
\(178\) −30.1421 −2.25925
\(179\) −3.37868 5.85204i −0.252534 0.437402i 0.711689 0.702495i \(-0.247931\pi\)
−0.964223 + 0.265093i \(0.914597\pi\)
\(180\) −5.41421 9.37769i −0.403552 0.698972i
\(181\) −5.15685 + 8.93193i −0.383306 + 0.663905i −0.991533 0.129858i \(-0.958548\pi\)
0.608227 + 0.793763i \(0.291881\pi\)
\(182\) 10.6569 0.789939
\(183\) 3.41421 + 5.91359i 0.252386 + 0.437145i
\(184\) −17.6569 −1.30168
\(185\) −1.00000 −0.0735215
\(186\) 0 0
\(187\) 0.899495 0.0657776
\(188\) −6.34315 −0.462621
\(189\) 0.500000 + 0.866025i 0.0363696 + 0.0629941i
\(190\) −3.82843 −0.277743
\(191\) 0.550253 0.953065i 0.0398149 0.0689614i −0.845431 0.534084i \(-0.820657\pi\)
0.885246 + 0.465123i \(0.153990\pi\)
\(192\) 11.8640 + 20.5490i 0.856208 + 1.48300i
\(193\) 10.5711 + 18.3096i 0.760922 + 1.31796i 0.942376 + 0.334556i \(0.108586\pi\)
−0.181454 + 0.983399i \(0.558080\pi\)
\(194\) −26.1421 −1.87690
\(195\) 2.20711 3.82282i 0.158054 0.273758i
\(196\) 2.24264 3.88437i 0.160189 0.277455i
\(197\) 1.74264 3.01834i 0.124158 0.215048i −0.797245 0.603655i \(-0.793710\pi\)
0.921404 + 0.388607i \(0.127044\pi\)
\(198\) 17.8995 + 31.0028i 1.27206 + 2.20328i
\(199\) 7.79289 13.4977i 0.552424 0.956826i −0.445675 0.895195i \(-0.647036\pi\)
0.998099 0.0616310i \(-0.0196302\pi\)
\(200\) −8.82843 15.2913i −0.624264 1.08126i
\(201\) −12.6569 −0.892746
\(202\) −20.4853 −1.44134
\(203\) −1.41421 2.44949i −0.0992583 0.171920i
\(204\) −0.792893 + 1.37333i −0.0555136 + 0.0961524i
\(205\) −4.74264 8.21449i −0.331240 0.573725i
\(206\) −14.5711 + 25.2378i −1.01521 + 1.75840i
\(207\) −5.65685 + 9.79796i −0.393179 + 0.681005i
\(208\) 2.74264 4.75039i 0.190168 0.329380i
\(209\) 8.31371 0.575071
\(210\) 7.03553 + 12.1859i 0.485498 + 0.840907i
\(211\) −3.79289 6.56948i −0.261114 0.452262i 0.705425 0.708785i \(-0.250756\pi\)
−0.966538 + 0.256523i \(0.917423\pi\)
\(212\) 0.328427 0.568852i 0.0225565 0.0390689i
\(213\) −33.9706 −2.32762
\(214\) 11.5711 + 20.0417i 0.790982 + 1.37002i
\(215\) −8.89949 −0.606941
\(216\) 1.82843 0.124409
\(217\) 0 0
\(218\) 12.4853 0.845610
\(219\) −9.24264 −0.624560
\(220\) −10.0355 17.3821i −0.676596 1.17190i
\(221\) −0.313708 −0.0211023
\(222\) −2.91421 + 5.04757i −0.195589 + 0.338770i
\(223\) 0.863961 + 1.49642i 0.0578551 + 0.100208i 0.893502 0.449059i \(-0.148241\pi\)
−0.835647 + 0.549266i \(0.814907\pi\)
\(224\) −1.91421 3.31552i −0.127899 0.221527i
\(225\) −11.3137 −0.754247
\(226\) 6.44975 11.1713i 0.429031 0.743103i
\(227\) 7.79289 13.4977i 0.517232 0.895873i −0.482567 0.875859i \(-0.660296\pi\)
0.999800 0.0200140i \(-0.00637108\pi\)
\(228\) −7.32843 + 12.6932i −0.485337 + 0.840628i
\(229\) 5.74264 + 9.94655i 0.379484 + 0.657286i 0.990987 0.133956i \(-0.0427681\pi\)
−0.611503 + 0.791242i \(0.709435\pi\)
\(230\) 4.82843 8.36308i 0.318377 0.551445i
\(231\) −15.2782 26.4626i −1.00523 1.74111i
\(232\) −5.17157 −0.339530
\(233\) −14.8284 −0.971443 −0.485721 0.874114i \(-0.661443\pi\)
−0.485721 + 0.874114i \(0.661443\pi\)
\(234\) −6.24264 10.8126i −0.408094 0.706840i
\(235\) 0.828427 1.43488i 0.0540406 0.0936011i
\(236\) 19.2782 + 33.3908i 1.25490 + 2.17355i
\(237\) −18.3995 + 31.8689i −1.19518 + 2.07010i
\(238\) 0.500000 0.866025i 0.0324102 0.0561361i
\(239\) −6.37868 + 11.0482i −0.412602 + 0.714648i −0.995173 0.0981314i \(-0.968713\pi\)
0.582571 + 0.812780i \(0.302047\pi\)
\(240\) 7.24264 0.467510
\(241\) 12.3284 + 21.3535i 0.794144 + 1.37550i 0.923381 + 0.383884i \(0.125414\pi\)
−0.129238 + 0.991614i \(0.541253\pi\)
\(242\) 19.8995 + 34.4669i 1.27919 + 2.21562i
\(243\) 10.8284 18.7554i 0.694644 1.20316i
\(244\) −10.8284 −0.693219
\(245\) 0.585786 + 1.01461i 0.0374245 + 0.0648212i
\(246\) −55.2843 −3.52480
\(247\) −2.89949 −0.184490
\(248\) 0 0
\(249\) −9.82843 −0.622851
\(250\) 21.7279 1.37419
\(251\) 1.79289 + 3.10538i 0.113166 + 0.196010i 0.917045 0.398783i \(-0.130567\pi\)
−0.803879 + 0.594793i \(0.797234\pi\)
\(252\) 26.1421 1.64680
\(253\) −10.4853 + 18.1610i −0.659204 + 1.14177i
\(254\) 13.1569 + 22.7883i 0.825534 + 1.42987i
\(255\) −0.207107 0.358719i −0.0129695 0.0224639i
\(256\) −29.9706 −1.87316
\(257\) 0.156854 0.271680i 0.00978430 0.0169469i −0.861092 0.508450i \(-0.830219\pi\)
0.870876 + 0.491503i \(0.163552\pi\)
\(258\) −25.9350 + 44.9208i −1.61464 + 2.79665i
\(259\) 1.20711 2.09077i 0.0750060 0.129914i
\(260\) 3.50000 + 6.06218i 0.217061 + 0.375960i
\(261\) −1.65685 + 2.86976i −0.102557 + 0.177633i
\(262\) −5.74264 9.94655i −0.354782 0.614500i
\(263\) 0.686292 0.0423185 0.0211593 0.999776i \(-0.493264\pi\)
0.0211593 + 0.999776i \(0.493264\pi\)
\(264\) −55.8701 −3.43856
\(265\) 0.0857864 + 0.148586i 0.00526982 + 0.00912759i
\(266\) 4.62132 8.00436i 0.283351 0.490779i
\(267\) −15.0711 26.1039i −0.922334 1.59753i
\(268\) 10.0355 17.3821i 0.613018 1.06178i
\(269\) −15.9142 + 27.5642i −0.970307 + 1.68062i −0.275681 + 0.961249i \(0.588903\pi\)
−0.694626 + 0.719371i \(0.744430\pi\)
\(270\) −0.500000 + 0.866025i −0.0304290 + 0.0527046i
\(271\) 23.3137 1.41621 0.708103 0.706109i \(-0.249551\pi\)
0.708103 + 0.706109i \(0.249551\pi\)
\(272\) −0.257359 0.445759i −0.0156047 0.0270281i
\(273\) 5.32843 + 9.22911i 0.322491 + 0.558571i
\(274\) 9.03553 15.6500i 0.545857 0.945451i
\(275\) −20.9706 −1.26457
\(276\) −18.4853 32.0174i −1.11268 1.92722i
\(277\) 14.1421 0.849719 0.424859 0.905259i \(-0.360324\pi\)
0.424859 + 0.905259i \(0.360324\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −10.6569 −0.636869
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) −4.82843 8.36308i −0.287529 0.498014i
\(283\) −2.34315 −0.139286 −0.0696428 0.997572i \(-0.522186\pi\)
−0.0696428 + 0.997572i \(0.522186\pi\)
\(284\) 26.9350 46.6528i 1.59830 2.76834i
\(285\) −1.91421 3.31552i −0.113388 0.196394i
\(286\) −11.5711 20.0417i −0.684212 1.18509i
\(287\) 22.8995 1.35171
\(288\) −2.24264 + 3.88437i −0.132149 + 0.228889i
\(289\) 8.48528 14.6969i 0.499134 0.864526i
\(290\) 1.41421 2.44949i 0.0830455 0.143839i
\(291\) −13.0711 22.6398i −0.766240 1.32717i
\(292\) 7.32843 12.6932i 0.428864 0.742814i
\(293\) 12.3995 + 21.4766i 0.724386 + 1.25467i 0.959226 + 0.282640i \(0.0912101\pi\)
−0.234840 + 0.972034i \(0.575457\pi\)
\(294\) 6.82843 0.398242
\(295\) −10.0711 −0.586360
\(296\) −2.20711 3.82282i −0.128285 0.222197i
\(297\) 1.08579 1.88064i 0.0630037 0.109126i
\(298\) 1.20711 + 2.09077i 0.0699258 + 0.121115i
\(299\) 3.65685 6.33386i 0.211481 0.366296i
\(300\) 18.4853 32.0174i 1.06725 1.84853i
\(301\) 10.7426 18.6068i 0.619196 1.07248i
\(302\) −41.7990 −2.40526
\(303\) −10.2426 17.7408i −0.588424 1.01918i
\(304\) −2.37868 4.11999i −0.136427 0.236298i
\(305\) 1.41421 2.44949i 0.0809776 0.140257i
\(306\) −1.17157 −0.0669744
\(307\) 1.37868 + 2.38794i 0.0786854 + 0.136287i 0.902683 0.430306i \(-0.141594\pi\)
−0.823998 + 0.566593i \(0.808261\pi\)
\(308\) 48.4558 2.76103
\(309\) −29.1421 −1.65784
\(310\) 0 0
\(311\) −11.3137 −0.641542 −0.320771 0.947157i \(-0.603942\pi\)
−0.320771 + 0.947157i \(0.603942\pi\)
\(312\) 19.4853 1.10314
\(313\) 1.91421 + 3.31552i 0.108198 + 0.187404i 0.915040 0.403363i \(-0.132159\pi\)
−0.806842 + 0.590767i \(0.798825\pi\)
\(314\) −35.7990 −2.02025
\(315\) −3.41421 + 5.91359i −0.192369 + 0.333193i
\(316\) −29.1777 50.5372i −1.64137 2.84294i
\(317\) 1.08579 + 1.88064i 0.0609838 + 0.105627i 0.894905 0.446256i \(-0.147243\pi\)
−0.833922 + 0.551883i \(0.813910\pi\)
\(318\) 1.00000 0.0560772
\(319\) −3.07107 + 5.31925i −0.171947 + 0.297821i
\(320\) 4.91421 8.51167i 0.274713 0.475817i
\(321\) −11.5711 + 20.0417i −0.645834 + 1.11862i
\(322\) 11.6569 + 20.1903i 0.649611 + 1.12516i
\(323\) −0.136039 + 0.235626i −0.00756941 + 0.0131106i
\(324\) 18.1569 + 31.4486i 1.00871 + 1.74714i
\(325\) 7.31371 0.405692
\(326\) 31.3137 1.73431
\(327\) 6.24264 + 10.8126i 0.345219 + 0.597937i
\(328\) 20.9350 36.2605i 1.15594 2.00215i
\(329\) 2.00000 + 3.46410i 0.110264 + 0.190982i
\(330\) 15.2782 26.4626i 0.841036 1.45672i
\(331\) 0.378680 0.655892i 0.0208141 0.0360511i −0.855431 0.517917i \(-0.826708\pi\)
0.876245 + 0.481866i \(0.160041\pi\)
\(332\) 7.79289 13.4977i 0.427691 0.740782i
\(333\) −2.82843 −0.154997
\(334\) 10.3284 + 17.8894i 0.565146 + 0.978862i
\(335\) 2.62132 + 4.54026i 0.143218 + 0.248061i
\(336\) −8.74264 + 15.1427i −0.476950 + 0.826102i
\(337\) 13.3137 0.725244 0.362622 0.931936i \(-0.381882\pi\)
0.362622 + 0.931936i \(0.381882\pi\)
\(338\) −11.6569 20.1903i −0.634049 1.09821i
\(339\) 12.8995 0.700604
\(340\) 0.656854 0.0356229
\(341\) 0 0
\(342\) −10.8284 −0.585534
\(343\) −19.7279 −1.06521
\(344\) −19.6421 34.0212i −1.05903 1.83430i
\(345\) 9.65685 0.519908
\(346\) −17.2782 + 29.9267i −0.928880 + 1.60887i
\(347\) 11.2782 + 19.5344i 0.605444 + 1.04866i 0.991981 + 0.126386i \(0.0403378\pi\)
−0.386537 + 0.922274i \(0.626329\pi\)
\(348\) −5.41421 9.37769i −0.290232 0.502697i
\(349\) 35.1127 1.87954 0.939770 0.341808i \(-0.111039\pi\)
0.939770 + 0.341808i \(0.111039\pi\)
\(350\) −11.6569 + 20.1903i −0.623085 + 1.07921i
\(351\) −0.378680 + 0.655892i −0.0202124 + 0.0350089i
\(352\) −4.15685 + 7.19988i −0.221561 + 0.383755i
\(353\) 1.50000 + 2.59808i 0.0798369 + 0.138282i 0.903179 0.429263i \(-0.141227\pi\)
−0.823343 + 0.567545i \(0.807893\pi\)
\(354\) −29.3492 + 50.8344i −1.55989 + 2.70182i
\(355\) 7.03553 + 12.1859i 0.373407 + 0.646761i
\(356\) 47.7990 2.53334
\(357\) 1.00000 0.0529256
\(358\) 8.15685 + 14.1281i 0.431103 + 0.746693i
\(359\) −13.4497 + 23.2956i −0.709851 + 1.22950i 0.255062 + 0.966925i \(0.417904\pi\)
−0.964912 + 0.262572i \(0.915429\pi\)
\(360\) 6.24264 + 10.8126i 0.329016 + 0.569873i
\(361\) 8.24264 14.2767i 0.433823 0.751404i
\(362\) 12.4497 21.5636i 0.654344 1.13336i
\(363\) −19.8995 + 34.4669i −1.04445 + 1.80904i
\(364\) −16.8995 −0.885774
\(365\) 1.91421 + 3.31552i 0.100195 + 0.173542i
\(366\) −8.24264 14.2767i −0.430850 0.746254i
\(367\) 9.10660 15.7731i 0.475361 0.823349i −0.524241 0.851570i \(-0.675651\pi\)
0.999602 + 0.0282210i \(0.00898422\pi\)
\(368\) 12.0000 0.625543
\(369\) −13.4142 23.2341i −0.698316 1.20952i
\(370\) 2.41421 0.125509
\(371\) −0.414214 −0.0215049
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −2.17157 −0.112289
\(375\) 10.8640 + 18.8169i 0.561013 + 0.971702i
\(376\) 7.31371 0.377176
\(377\) 1.07107 1.85514i 0.0551628 0.0955448i
\(378\) −1.20711 2.09077i −0.0620869 0.107538i
\(379\) 14.6924 + 25.4480i 0.754697 + 1.30717i 0.945525 + 0.325550i \(0.105550\pi\)
−0.190827 + 0.981624i \(0.561117\pi\)
\(380\) 6.07107 0.311439
\(381\) −13.1569 + 22.7883i −0.674046 + 1.16748i
\(382\) −1.32843 + 2.30090i −0.0679682 + 0.117724i
\(383\) 12.4497 21.5636i 0.636152 1.10185i −0.350117 0.936706i \(-0.613858\pi\)
0.986270 0.165142i \(-0.0528084\pi\)
\(384\) −24.8137 42.9786i −1.26627 2.19324i
\(385\) −6.32843 + 10.9612i −0.322527 + 0.558632i
\(386\) −25.5208 44.2033i −1.29898 2.24989i
\(387\) −25.1716 −1.27954
\(388\) 41.4558 2.10460
\(389\) 8.57107 + 14.8455i 0.434570 + 0.752698i 0.997260 0.0739699i \(-0.0235669\pi\)
−0.562690 + 0.826668i \(0.690234\pi\)
\(390\) −5.32843 + 9.22911i −0.269815 + 0.467334i
\(391\) −0.343146 0.594346i −0.0173536 0.0300574i
\(392\) −2.58579 + 4.47871i −0.130602 + 0.226209i
\(393\) 5.74264 9.94655i 0.289678 0.501737i
\(394\) −4.20711 + 7.28692i −0.211951 + 0.367110i
\(395\) 15.2426 0.766940
\(396\) −28.3848 49.1639i −1.42639 2.47058i
\(397\) 8.25736 + 14.3022i 0.414425 + 0.717805i 0.995368 0.0961392i \(-0.0306494\pi\)
−0.580943 + 0.813944i \(0.697316\pi\)
\(398\) −18.8137 + 32.5863i −0.943046 + 1.63340i
\(399\) 9.24264 0.462711
\(400\) 6.00000 + 10.3923i 0.300000 + 0.519615i
\(401\) 21.1716 1.05726 0.528629 0.848853i \(-0.322706\pi\)
0.528629 + 0.848853i \(0.322706\pi\)
\(402\) 30.5563 1.52401
\(403\) 0 0
\(404\) 32.4853 1.61620
\(405\) −9.48528 −0.471327
\(406\) 3.41421 + 5.91359i 0.169445 + 0.293487i
\(407\) −5.24264 −0.259868
\(408\) 0.914214 1.58346i 0.0452603 0.0783932i
\(409\) 4.67157 + 8.09140i 0.230994 + 0.400094i 0.958101 0.286431i \(-0.0924688\pi\)
−0.727107 + 0.686525i \(0.759135\pi\)
\(410\) 11.4497 + 19.8315i 0.565463 + 0.979410i
\(411\) 18.0711 0.891380
\(412\) 23.1066 40.0218i 1.13838 1.97173i
\(413\) 12.1569 21.0563i 0.598200 1.03611i
\(414\) 13.6569 23.6544i 0.671198 1.16255i
\(415\) 2.03553 + 3.52565i 0.0999204 + 0.173067i
\(416\) 1.44975 2.51104i 0.0710797 0.123114i
\(417\) 0 0
\(418\) −20.0711 −0.981708
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) −11.1569 19.3242i −0.544399 0.942926i
\(421\) 1.42893 2.47498i 0.0696419 0.120623i −0.829102 0.559098i \(-0.811148\pi\)
0.898744 + 0.438474i \(0.144481\pi\)
\(422\) 9.15685 + 15.8601i 0.445749 + 0.772059i
\(423\) 2.34315 4.05845i 0.113928 0.197328i
\(424\) −0.378680 + 0.655892i −0.0183903 + 0.0318530i
\(425\) 0.343146 0.594346i 0.0166450 0.0288300i
\(426\) 82.0122 3.97350
\(427\) 3.41421 + 5.91359i 0.165225 + 0.286179i
\(428\) −18.3492 31.7818i −0.886944 1.53623i
\(429\) 11.5711 20.0417i 0.558656 0.967621i
\(430\) 21.4853 1.03611
\(431\) 12.6213 + 21.8608i 0.607948 + 1.05300i 0.991578 + 0.129510i \(0.0413403\pi\)
−0.383631 + 0.923487i \(0.625326\pi\)
\(432\) −1.24264 −0.0597866
\(433\) 35.1127 1.68741 0.843704 0.536808i \(-0.180370\pi\)
0.843704 + 0.536808i \(0.180370\pi\)
\(434\) 0 0
\(435\) 2.82843 0.135613
\(436\) −19.7990 −0.948200
\(437\) −3.17157 5.49333i −0.151717 0.262781i
\(438\) 22.3137 1.06619
\(439\) 6.03553 10.4539i 0.288060 0.498935i −0.685286 0.728274i \(-0.740323\pi\)
0.973347 + 0.229339i \(0.0736563\pi\)
\(440\) 11.5711 + 20.0417i 0.551629 + 0.955449i
\(441\) 1.65685 + 2.86976i 0.0788978 + 0.136655i
\(442\) 0.757359 0.0360239
\(443\) 6.62132 11.4685i 0.314588 0.544883i −0.664761 0.747056i \(-0.731467\pi\)
0.979350 + 0.202173i \(0.0648002\pi\)
\(444\) 4.62132 8.00436i 0.219318 0.379870i
\(445\) −6.24264 + 10.8126i −0.295930 + 0.512565i
\(446\) −2.08579 3.61269i −0.0987649 0.171066i
\(447\) −1.20711 + 2.09077i −0.0570942 + 0.0988900i
\(448\) 11.8640 + 20.5490i 0.560519 + 0.970848i
\(449\) −4.62742 −0.218381 −0.109191 0.994021i \(-0.534826\pi\)
−0.109191 + 0.994021i \(0.534826\pi\)
\(450\) 27.3137 1.28758
\(451\) −24.8640 43.0656i −1.17080 2.02788i
\(452\) −10.2279 + 17.7153i −0.481081 + 0.833257i
\(453\) −20.8995 36.1990i −0.981944 1.70078i
\(454\) −18.8137 + 32.5863i −0.882971 + 1.52935i
\(455\) 2.20711 3.82282i 0.103471 0.179217i
\(456\) 8.44975 14.6354i 0.395696 0.685365i
\(457\) −31.1127 −1.45539 −0.727695 0.685901i \(-0.759409\pi\)
−0.727695 + 0.685901i \(0.759409\pi\)
\(458\) −13.8640 24.0131i −0.647820 1.12206i
\(459\) 0.0355339 + 0.0615465i 0.00165858 + 0.00287275i
\(460\) −7.65685 + 13.2621i −0.357003 + 0.618347i
\(461\) −26.1421 −1.21756 −0.608780 0.793339i \(-0.708341\pi\)
−0.608780 + 0.793339i \(0.708341\pi\)
\(462\) 36.8848 + 63.8863i 1.71604 + 2.97226i
\(463\) −24.9706 −1.16048 −0.580240 0.814445i \(-0.697041\pi\)
−0.580240 + 0.814445i \(0.697041\pi\)
\(464\) 3.51472 0.163167
\(465\) 0 0
\(466\) 35.7990 1.65836
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 9.89949 + 17.1464i 0.457604 + 0.792594i
\(469\) −12.6569 −0.584439
\(470\) −2.00000 + 3.46410i −0.0922531 + 0.159787i
\(471\) −17.8995 31.0028i −0.824765 1.42854i
\(472\) −22.2279 38.4999i −1.02312 1.77210i
\(473\) −46.6569 −2.14528
\(474\) 44.4203 76.9382i 2.04029 3.53389i
\(475\) 3.17157 5.49333i 0.145522 0.252051i
\(476\) −0.792893 + 1.37333i −0.0363422 + 0.0629465i
\(477\) 0.242641 + 0.420266i 0.0111098 + 0.0192427i
\(478\) 15.3995 26.6727i 0.704357 1.21998i
\(479\) −4.86396 8.42463i −0.222240 0.384931i 0.733248 0.679962i \(-0.238004\pi\)
−0.955488 + 0.295030i \(0.904670\pi\)
\(480\) 3.82843 0.174743
\(481\) 1.82843 0.0833691
\(482\) −29.7635 51.5518i −1.35569 2.34812i
\(483\) −11.6569 + 20.1903i −0.530405 + 0.918689i
\(484\) −31.5563 54.6572i −1.43438 2.48442i
\(485\) −5.41421 + 9.37769i −0.245847 + 0.425819i
\(486\) −26.1421 + 45.2795i −1.18583 + 2.05392i
\(487\) −8.69239 + 15.0557i −0.393890 + 0.682237i −0.992959 0.118460i \(-0.962204\pi\)
0.599069 + 0.800697i \(0.295537\pi\)
\(488\) 12.4853 0.565182
\(489\) 15.6569 + 27.1185i 0.708027 + 1.22634i
\(490\) −1.41421 2.44949i −0.0638877 0.110657i
\(491\) 2.20711 3.82282i 0.0996053 0.172522i −0.811916 0.583774i \(-0.801575\pi\)
0.911521 + 0.411253i \(0.134909\pi\)
\(492\) 87.6690 3.95243
\(493\) −0.100505 0.174080i −0.00452652 0.00784016i
\(494\) 7.00000 0.314945
\(495\) 14.8284 0.666488
\(496\) 0 0
\(497\) −33.9706 −1.52379
\(498\) 23.7279 1.06327
\(499\) 20.1066 + 34.8257i 0.900095 + 1.55901i 0.827369 + 0.561659i \(0.189837\pi\)
0.0727259 + 0.997352i \(0.476830\pi\)
\(500\) −34.4558 −1.54091
\(501\) −10.3284 + 17.8894i −0.461440 + 0.799238i
\(502\) −4.32843 7.49706i −0.193187 0.334610i
\(503\) −11.6924 20.2518i −0.521338 0.902984i −0.999692 0.0248166i \(-0.992100\pi\)
0.478354 0.878167i \(-0.341234\pi\)
\(504\) −30.1421 −1.34264
\(505\) −4.24264 + 7.34847i −0.188795 + 0.327003i
\(506\) 25.3137 43.8446i 1.12533 1.94913i
\(507\) 11.6569 20.1903i 0.517699 0.896681i
\(508\) −20.8640 36.1374i −0.925689 1.60334i
\(509\) 3.39949 5.88810i 0.150680 0.260985i −0.780798 0.624784i \(-0.785187\pi\)
0.931478 + 0.363799i \(0.118520\pi\)
\(510\) 0.500000 + 0.866025i 0.0221404 + 0.0383482i
\(511\) −9.24264 −0.408870
\(512\) 31.2426 1.38074
\(513\) 0.328427 + 0.568852i 0.0145004 + 0.0251154i
\(514\) −0.378680 + 0.655892i −0.0167028 + 0.0289302i
\(515\) 6.03553 + 10.4539i 0.265957 + 0.460652i
\(516\) 41.1274 71.2348i 1.81053 3.13594i
\(517\) 4.34315 7.52255i 0.191011 0.330841i
\(518\) −2.91421 + 5.04757i −0.128043 + 0.221777i
\(519\) −34.5563 −1.51686
\(520\) −4.03553 6.98975i −0.176970 0.306521i
\(521\) −15.2279 26.3755i −0.667147 1.15553i −0.978698 0.205304i \(-0.934182\pi\)
0.311551 0.950229i \(-0.399152\pi\)
\(522\) 4.00000 6.92820i 0.175075 0.303239i
\(523\) 8.00000 0.349816 0.174908 0.984585i \(-0.444037\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) 9.10660 + 15.7731i 0.397824 + 0.689051i
\(525\) −23.3137 −1.01749
\(526\) −1.65685 −0.0722423
\(527\) 0 0
\(528\) 37.9706 1.65246
\(529\) −7.00000 −0.304348
\(530\) −0.207107 0.358719i −0.00899614 0.0155818i
\(531\) −28.4853 −1.23616
\(532\) −7.32843 + 12.6932i −0.317728 + 0.550320i
\(533\) 8.67157 + 15.0196i 0.375608 + 0.650571i
\(534\) 36.3848 + 63.0203i 1.57452 + 2.72715i
\(535\) 9.58579 0.414430
\(536\) −11.5711 + 20.0417i −0.499794 + 0.865669i
\(537\) −8.15685 + 14.1281i −0.351994 + 0.609672i
\(538\) 38.4203 66.5459i 1.65642 2.86900i
\(539\) 3.07107 + 5.31925i 0.132280 + 0.229116i
\(540\) 0.792893 1.37333i 0.0341207 0.0590988i
\(541\) −12.6421 21.8968i −0.543528 0.941418i −0.998698 0.0510134i \(-0.983755\pi\)
0.455170 0.890405i \(-0.349578\pi\)
\(542\) −56.2843 −2.41762
\(543\) 24.8995 1.06854
\(544\) −0.136039 0.235626i −0.00583262 0.0101024i
\(545\) 2.58579 4.47871i 0.110763 0.191847i
\(546\) −12.8640 22.2810i −0.550527 0.953540i
\(547\) −2.86396 + 4.96053i −0.122454 + 0.212097i −0.920735 0.390189i \(-0.872410\pi\)
0.798281 + 0.602285i \(0.205743\pi\)
\(548\) −14.3284 + 24.8176i −0.612080 + 1.06015i
\(549\) 4.00000 6.92820i 0.170716 0.295689i
\(550\) 50.6274 2.15876
\(551\) −0.928932 1.60896i −0.0395738 0.0685439i
\(552\) 21.3137 + 36.9164i 0.907172 + 1.57127i
\(553\) −18.3995 + 31.8689i −0.782426 + 1.35520i
\(554\) −34.1421 −1.45056
\(555\) 1.20711 + 2.09077i 0.0512388 + 0.0887483i
\(556\) 0 0
\(557\) −44.4853 −1.88490 −0.942451 0.334344i \(-0.891485\pi\)
−0.942451 + 0.334344i \(0.891485\pi\)
\(558\) 0 0
\(559\) 16.2721 0.688236
\(560\) 7.24264 0.306057
\(561\) −1.08579 1.88064i −0.0458419 0.0794006i
\(562\) −4.82843 −0.203675
\(563\) −2.37868 + 4.11999i −0.100249 + 0.173637i −0.911787 0.410663i \(-0.865297\pi\)
0.811538 + 0.584300i \(0.198631\pi\)
\(564\) 7.65685 + 13.2621i 0.322412 + 0.558433i
\(565\) −2.67157 4.62730i −0.112394 0.194672i
\(566\) 5.65685 0.237775
\(567\) 11.4497 19.8315i 0.480844 0.832847i
\(568\) −31.0563 + 53.7912i −1.30310 + 2.25703i
\(569\) 7.57107 13.1135i 0.317396 0.549745i −0.662548 0.749019i \(-0.730525\pi\)
0.979944 + 0.199274i \(0.0638583\pi\)
\(570\) 4.62132 + 8.00436i 0.193566 + 0.335266i
\(571\) −20.4497 + 35.4200i −0.855795 + 1.48228i 0.0201099 + 0.999798i \(0.493598\pi\)
−0.875905 + 0.482483i \(0.839735\pi\)
\(572\) 18.3492 + 31.7818i 0.767220 + 1.32886i
\(573\) −2.65685 −0.110992
\(574\) −55.2843 −2.30752
\(575\) 8.00000 + 13.8564i 0.333623 + 0.577852i
\(576\) 13.8995 24.0746i 0.579146 1.00311i
\(577\) 16.9853 + 29.4194i 0.707107 + 1.22474i 0.965926 + 0.258819i \(0.0833332\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(578\) −20.4853 + 35.4815i −0.852075 + 1.47584i
\(579\) 25.5208 44.2033i 1.06061 1.83703i
\(580\) −2.24264 + 3.88437i −0.0931206 + 0.161290i
\(581\) −9.82843 −0.407752
\(582\) 31.5563 + 54.6572i 1.30805 + 2.26561i
\(583\) 0.449747 + 0.778985i 0.0186266 + 0.0322623i
\(584\) −8.44975 + 14.6354i −0.349653 + 0.605617i
\(585\) −5.17157 −0.213818
\(586\) −29.9350 51.8490i −1.23660 2.14186i
\(587\) 20.3431 0.839651 0.419826 0.907605i \(-0.362091\pi\)
0.419826 + 0.907605i \(0.362091\pi\)
\(588\) −10.8284 −0.446557
\(589\) 0 0
\(590\) 24.3137 1.00098
\(591\) −8.41421 −0.346114
\(592\) 1.50000 + 2.59808i 0.0616496 + 0.106780i
\(593\) 21.3137 0.875249 0.437625 0.899158i \(-0.355820\pi\)
0.437625 + 0.899158i \(0.355820\pi\)
\(594\) −2.62132 + 4.54026i −0.107554 + 0.186289i
\(595\) −0.207107 0.358719i −0.00849055 0.0147061i
\(596\) −1.91421 3.31552i −0.0784092 0.135809i
\(597\) −37.6274 −1.53999
\(598\) −8.82843 + 15.2913i −0.361021 + 0.625307i
\(599\) −17.4497 + 30.2238i −0.712977 + 1.23491i 0.250757 + 0.968050i \(0.419320\pi\)
−0.963734 + 0.266863i \(0.914013\pi\)
\(600\) −21.3137 + 36.9164i −0.870129 + 1.50711i
\(601\) −11.7426 20.3389i −0.478992 0.829639i 0.520717 0.853729i \(-0.325664\pi\)
−0.999710 + 0.0240900i \(0.992331\pi\)
\(602\) −25.9350 + 44.9208i −1.05703 + 1.83083i
\(603\) 7.41421 + 12.8418i 0.301930 + 0.522958i
\(604\) 66.2843 2.69707
\(605\) 16.4853 0.670222
\(606\) 24.7279 + 42.8300i 1.00450 + 1.73985i
\(607\) 2.20711 3.82282i 0.0895837 0.155164i −0.817752 0.575571i \(-0.804780\pi\)
0.907335 + 0.420408i \(0.138113\pi\)
\(608\) −1.25736 2.17781i −0.0509927 0.0883219i
\(609\) −3.41421 + 5.91359i −0.138351 + 0.239631i
\(610\) −3.41421 + 5.91359i −0.138237 + 0.239434i
\(611\) −1.51472 + 2.62357i −0.0612790 + 0.106138i
\(612\) 1.85786 0.0750997
\(613\) −5.15685 8.93193i −0.208283 0.360757i 0.742890 0.669413i \(-0.233454\pi\)
−0.951174 + 0.308656i \(0.900121\pi\)
\(614\) −3.32843 5.76500i −0.134324 0.232657i
\(615\) −11.4497 + 19.8315i −0.461698 + 0.799685i
\(616\) −55.8701 −2.25107
\(617\) −11.6421 20.1648i −0.468695 0.811803i 0.530665 0.847582i \(-0.321942\pi\)
−0.999360 + 0.0357786i \(0.988609\pi\)
\(618\) 70.3553 2.83011
\(619\) 31.6569 1.27240 0.636198 0.771526i \(-0.280506\pi\)
0.636198 + 0.771526i \(0.280506\pi\)
\(620\) 0 0
\(621\) −1.65685 −0.0664873
\(622\) 27.3137 1.09518
\(623\) −15.0711 26.1039i −0.603810 1.04583i
\(624\) −13.2426 −0.530130
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) −4.62132 8.00436i −0.184705 0.319919i
\(627\) −10.0355 17.3821i −0.400781 0.694172i
\(628\) 56.7696 2.26535
\(629\) 0.0857864 0.148586i 0.00342053 0.00592453i
\(630\) 8.24264 14.2767i 0.328395 0.568796i
\(631\) −16.0061 + 27.7234i −0.637193 + 1.10365i 0.348853 + 0.937177i \(0.386571\pi\)
−0.986046 + 0.166473i \(0.946762\pi\)
\(632\) 33.6421 + 58.2699i 1.33821 + 2.31785i
\(633\) −9.15685 + 15.8601i −0.363952 + 0.630384i
\(634\) −2.62132 4.54026i −0.104106 0.180317i
\(635\) 10.8995 0.432533
\(636\) −1.58579 −0.0628805
\(637\) −1.07107 1.85514i −0.0424373 0.0735035i
\(638\) 7.41421 12.8418i 0.293532 0.508412i
\(639\) 19.8995 + 34.4669i 0.787212 + 1.36349i
\(640\) −10.2782 + 17.8023i −0.406281 + 0.703699i
\(641\) 9.98528 17.2950i 0.394395 0.683112i −0.598629 0.801027i \(-0.704288\pi\)
0.993024 + 0.117915i \(0.0376209\pi\)
\(642\) 27.9350 48.3849i 1.10251 1.90960i
\(643\) −12.6863 −0.500298 −0.250149 0.968207i \(-0.580480\pi\)
−0.250149 + 0.968207i \(0.580480\pi\)
\(644\) −18.4853 32.0174i −0.728422 1.26166i
\(645\) 10.7426 + 18.6068i 0.422991 + 0.732642i
\(646\) 0.328427 0.568852i 0.0129218 0.0223812i
\(647\) 22.6863 0.891890 0.445945 0.895060i \(-0.352868\pi\)
0.445945 + 0.895060i \(0.352868\pi\)
\(648\) −20.9350 36.2605i −0.822406 1.42445i
\(649\) −52.7990 −2.07254
\(650\) −17.6569 −0.692559
\(651\) 0 0
\(652\) −49.6569 −1.94471
\(653\) 22.1421 0.866489 0.433244 0.901276i \(-0.357369\pi\)
0.433244 + 0.901276i \(0.357369\pi\)
\(654\) −15.0711 26.1039i −0.589325 1.02074i
\(655\) −4.75736 −0.185885
\(656\) −14.2279 + 24.6435i −0.555507 + 0.962166i
\(657\) 5.41421 + 9.37769i 0.211229 + 0.365859i
\(658\) −4.82843 8.36308i −0.188232 0.326027i
\(659\) 9.65685 0.376178 0.188089 0.982152i \(-0.439771\pi\)
0.188089 + 0.982152i \(0.439771\pi\)
\(660\) −24.2279 + 41.9640i −0.943071 + 1.63345i
\(661\) −16.5711 + 28.7019i −0.644540 + 1.11638i 0.339868 + 0.940473i \(0.389618\pi\)
−0.984408 + 0.175903i \(0.943716\pi\)
\(662\) −0.914214 + 1.58346i −0.0355319 + 0.0615431i
\(663\) 0.378680 + 0.655892i 0.0147067 + 0.0254728i
\(664\) −8.98528 + 15.5630i −0.348697 + 0.603960i
\(665\) −1.91421 3.31552i −0.0742300 0.128570i
\(666\) 6.82843 0.264596
\(667\) 4.68629 0.181454
\(668\) −16.3787 28.3687i −0.633710 1.09762i
\(669\) 2.08579 3.61269i 0.0806412 0.139675i
\(670\) −6.32843 10.9612i −0.244488 0.423466i
\(671\) 7.41421 12.8418i 0.286223 0.495752i
\(672\) −4.62132 + 8.00436i −0.178271 + 0.308775i
\(673\) 10.3284 17.8894i 0.398132 0.689584i −0.595364 0.803456i \(-0.702992\pi\)
0.993495 + 0.113872i \(0.0363254\pi\)
\(674\) −32.1421 −1.23807
\(675\) −0.828427 1.43488i −0.0318862 0.0552285i
\(676\) 18.4853 + 32.0174i 0.710972 + 1.23144i
\(677\) 20.2990 35.1589i 0.780154 1.35127i −0.151698 0.988427i \(-0.548474\pi\)
0.931852 0.362839i \(-0.118192\pi\)
\(678\) −31.1421 −1.19601
\(679\) −13.0711 22.6398i −0.501622 0.868834i
\(680\) −0.757359 −0.0290434
\(681\) −37.6274 −1.44189
\(682\) 0 0
\(683\) −46.6274 −1.78415 −0.892074 0.451889i \(-0.850750\pi\)
−0.892074 + 0.451889i \(0.850750\pi\)
\(684\) 17.1716 0.656571
\(685\) −3.74264 6.48244i −0.142999 0.247681i
\(686\) 47.6274 1.81842
\(687\) 13.8640 24.0131i 0.528943 0.916156i
\(688\) 13.3492 + 23.1216i 0.508935 + 0.881501i
\(689\) −0.156854 0.271680i −0.00597567 0.0103502i
\(690\) −23.3137 −0.887538
\(691\) −7.03553 + 12.1859i −0.267644 + 0.463574i −0.968253 0.249972i \(-0.919579\pi\)
0.700609 + 0.713546i \(0.252912\pi\)
\(692\) 27.3995 47.4573i 1.04157 1.80406i
\(693\) −17.8995 + 31.0028i −0.679946 + 1.17770i
\(694\) −27.2279 47.1601i −1.03356 1.79017i
\(695\) 0 0
\(696\) 6.24264 + 10.8126i 0.236627 + 0.409849i
\(697\) 1.62742 0.0616428
\(698\) −84.7696 −3.20857
\(699\) 17.8995 + 31.0028i 0.677021 + 1.17263i
\(700\) 18.4853 32.0174i 0.698678 1.21015i
\(701\) −1.74264 3.01834i −0.0658186 0.114001i 0.831238 0.555916i \(-0.187633\pi\)
−0.897057 + 0.441915i \(0.854299\pi\)
\(702\) 0.914214 1.58346i 0.0345048 0.0597640i
\(703\) 0.792893 1.37333i 0.0299045 0.0517962i
\(704\) 25.7635 44.6236i 0.970997 1.68182i
\(705\) −4.00000 −0.150649
\(706\) −3.62132 6.27231i −0.136290 0.236062i
\(707\) −10.2426 17.7408i −0.385214 0.667210i
\(708\) 46.5416 80.6125i 1.74914 3.02960i
\(709\) 5.31371 0.199561 0.0997803 0.995009i \(-0.468186\pi\)
0.0997803 + 0.995009i \(0.468186\pi\)
\(710\) −16.9853 29.4194i −0.637446 1.10409i
\(711\) 43.1127 1.61685
\(712\) −55.1127 −2.06544
\(713\) 0 0
\(714\) −2.41421 −0.0903497
\(715\) −9.58579 −0.358488
\(716\) −12.9350 22.4041i −0.483405 0.837282i
\(717\) 30.7990 1.15021
\(718\) 32.4706 56.2407i 1.21179 2.09888i
\(719\) 3.03553 + 5.25770i 0.113206 + 0.196079i 0.917061 0.398746i \(-0.130555\pi\)
−0.803855 + 0.594825i \(0.797221\pi\)
\(720\) −4.24264 7.34847i −0.158114 0.273861i
\(721\) −29.1421 −1.08531
\(722\) −19.8995 + 34.4669i −0.740583 + 1.28273i
\(723\) 29.7635 51.5518i 1.10691 1.91723i
\(724\) −19.7426 + 34.1953i −0.733729 + 1.27086i
\(725\) 2.34315 + 4.05845i 0.0870222 + 0.150727i
\(726\) 48.0416 83.2105i 1.78299 3.08823i
\(727\) 23.4203 + 40.5652i 0.868611 + 1.50448i 0.863416 + 0.504492i \(0.168320\pi\)
0.00519502 + 0.999987i \(0.498346\pi\)
\(728\) 19.4853 0.722173
\(729\) −23.8284 −0.882534
\(730\) −4.62132 8.00436i −0.171043 0.296255i
\(731\) 0.763456 1.32234i 0.0282374 0.0489087i
\(732\) 13.0711 + 22.6398i 0.483121 + 0.836789i
\(733\) 14.8137 25.6581i 0.547157 0.947703i −0.451311 0.892367i \(-0.649043\pi\)
0.998468 0.0553366i \(-0.0176232\pi\)
\(734\) −21.9853 + 38.0796i −0.811492 + 1.40554i
\(735\) 1.41421 2.44949i 0.0521641 0.0903508i
\(736\) 6.34315 0.233811
\(737\) 13.7426 + 23.8030i 0.506217 + 0.876793i
\(738\) 32.3848 + 56.0921i 1.19210 + 2.06478i
\(739\) −3.93503 + 6.81567i −0.144752 + 0.250718i −0.929281 0.369375i \(-0.879572\pi\)
0.784528 + 0.620093i \(0.212905\pi\)
\(740\) −3.82843 −0.140736
\(741\) 3.50000 + 6.06218i 0.128576 + 0.222700i
\(742\) 1.00000 0.0367112
\(743\) 5.65685 0.207530 0.103765 0.994602i \(-0.466911\pi\)
0.103765 + 0.994602i \(0.466911\pi\)
\(744\) 0 0
\(745\) 1.00000 0.0366372
\(746\) −24.1421 −0.883906
\(747\) 5.75736 + 9.97204i 0.210651 + 0.364858i
\(748\) 3.44365 0.125912
\(749\) −11.5711 + 20.0417i −0.422798 + 0.732307i
\(750\) −26.2279 45.4281i −0.957708 1.65880i
\(751\) 0.621320 + 1.07616i 0.0226723 + 0.0392696i 0.877139 0.480237i \(-0.159449\pi\)
−0.854467 + 0.519506i \(0.826116\pi\)
\(752\) −4.97056 −0.181258
\(753\) 4.32843 7.49706i 0.157737 0.273208i
\(754\) −2.58579 + 4.47871i −0.0941688 + 0.163105i
\(755\) −8.65685 + 14.9941i −0.315055 + 0.545692i
\(756\) 1.91421 + 3.31552i 0.0696193 + 0.120584i
\(757\) 17.3284 30.0137i 0.629812 1.09087i −0.357777 0.933807i \(-0.616465\pi\)
0.987589 0.157060i \(-0.0502016\pi\)
\(758\) −35.4706 61.4368i −1.28835 2.23149i
\(759\) 50.6274 1.83766
\(760\) −7.00000 −0.253917
\(761\) −10.2279 17.7153i −0.370762 0.642178i 0.618921 0.785453i \(-0.287570\pi\)
−0.989683 + 0.143275i \(0.954237\pi\)
\(762\) 31.7635 55.0159i 1.15067 1.99302i
\(763\) 6.24264 + 10.8126i 0.225999 + 0.391441i
\(764\) 2.10660 3.64874i 0.0762142 0.132007i
\(765\) −0.242641 + 0.420266i −0.00877269 + 0.0151947i
\(766\) −30.0563 + 52.0591i −1.08598 + 1.88097i
\(767\) 18.4142 0.664899
\(768\) 36.1777 + 62.6616i 1.30545 + 2.26110i
\(769\) 13.0563 + 22.6143i 0.470824 + 0.815491i 0.999443 0.0333680i \(-0.0106233\pi\)
−0.528619 + 0.848859i \(0.677290\pi\)
\(770\) 15.2782 26.4626i 0.550587 0.953645i
\(771\) −0.757359 −0.0272756
\(772\) 40.4706 + 70.0971i 1.45657 + 2.52285i
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 60.7696 2.18432
\(775\) 0 0
\(776\) −47.7990 −1.71588
\(777\) −5.82843 −0.209094
\(778\) −20.6924 35.8403i −0.741858 1.28494i
\(779\) 15.0416 0.538922
\(780\) 8.44975 14.6354i 0.302549 0.524031i
\(781\) 36.8848 + 63.8863i 1.31984 + 2.28603i
\(782\) 0.828427 + 1.43488i 0.0296245 + 0.0513111i
\(783\) −0.485281 −0.0173425
\(784\) 1.75736 3.04384i 0.0627628 0.108708i
\(785\) −7.41421 + 12.8418i −0.264625 + 0.458343i
\(786\) −13.8640 + 24.0131i −0.494511 + 0.856518i
\(787\) 19.7929 + 34.2823i 0.705540 + 1.22203i 0.966496 + 0.256681i \(0.0826290\pi\)
−0.260956 + 0.965351i \(0.584038\pi\)
\(788\) 6.67157 11.5555i 0.237665 0.411648i
\(789\) −0.828427 1.43488i −0.0294928 0.0510830i
\(790\) −36.7990 −1.30925
\(791\) 12.8995 0.458653
\(792\) 32.7279 + 56.6864i 1.16294 + 2.01426i
\(793\) −2.58579 + 4.47871i −0.0918240 + 0.159044i
\(794\) −19.9350 34.5285i −0.707468 1.22537i
\(795\) 0.207107 0.358719i 0.00734532 0.0127225i
\(796\) 29.8345 51.6749i 1.05746 1.83157i
\(797\) −11.2279 + 19.4473i −0.397713 + 0.688860i −0.993443 0.114325i \(-0.963529\pi\)
0.595730 + 0.803185i \(0.296863\pi\)
\(798\) −22.3137 −0.789897
\(799\) 0.142136 + 0.246186i 0.00502840 + 0.00870944i
\(800\) 3.17157 + 5.49333i 0.112132 + 0.194218i
\(801\) −17.6569 + 30.5826i −0.623874 + 1.08058i
\(802\) −51.1127 −1.80485
\(803\) 10.0355 + 17.3821i 0.354146 + 0.613399i
\(804\) −48.4558 −1.70891
\(805\) 9.65685 0.340359
\(806\) 0 0
\(807\) 76.8406 2.70492
\(808\) −37.4558 −1.31769
\(809\) −22.9853 39.8117i −0.808119 1.39970i −0.914165 0.405343i \(-0.867152\pi\)
0.106045 0.994361i \(-0.466181\pi\)
\(810\) 22.8995 0.804606
\(811\) −5.86396 + 10.1567i −0.205912 + 0.356649i −0.950423 0.310961i \(-0.899349\pi\)
0.744511 + 0.667610i \(0.232683\pi\)
\(812\) −5.41421 9.37769i −0.190002 0.329093i
\(813\) −28.1421 48.7436i −0.986988 1.70951i
\(814\) 12.6569 0.443623
\(815\) 6.48528 11.2328i 0.227169 0.393469i
\(816\) −0.621320 + 1.07616i −0.0217506 + 0.0376731i
\(817\) 7.05635 12.2220i 0.246870 0.427592i
\(818\) −11.2782 19.5344i −0.394332 0.683003i
\(819\) 6.24264 10.8126i 0.218136 0.377822i
\(820\) −18.1569 31.4486i −0.634065 1.09823i
\(821\) 8.48528 0.296138 0.148069 0.988977i \(-0.452694\pi\)
0.148069 + 0.988977i \(0.452694\pi\)
\(822\) −43.6274 −1.52168
\(823\) −3.10660 5.38079i −0.108289 0.187563i 0.806788 0.590841i \(-0.201204\pi\)
−0.915077 + 0.403278i \(0.867871\pi\)
\(824\) −26.6421 + 46.1455i −0.928123 + 1.60756i
\(825\) 25.3137 + 43.8446i 0.881310 + 1.52647i
\(826\) −29.3492 + 50.8344i −1.02119 + 1.76875i
\(827\) 8.55025 14.8095i 0.297321 0.514976i −0.678201 0.734877i \(-0.737240\pi\)
0.975522 + 0.219901i \(0.0705734\pi\)
\(828\) −21.6569 + 37.5108i −0.752628 + 1.30359i
\(829\) 46.4264 1.61246 0.806228 0.591605i \(-0.201506\pi\)
0.806228 + 0.591605i \(0.201506\pi\)
\(830\) −4.91421 8.51167i −0.170575 0.295444i
\(831\) −17.0711 29.5680i −0.592189 1.02570i
\(832\) −8.98528 + 15.5630i −0.311509 + 0.539549i
\(833\) −0.201010 −0.00696459
\(834\) 0 0
\(835\) 8.55635 0.296105
\(836\) 31.8284 1.10081
\(837\) 0 0
\(838\) −67.5980 −2.33513
\(839\) 30.6274 1.05738 0.528688 0.848816i \(-0.322684\pi\)
0.528688 + 0.848816i \(0.322684\pi\)
\(840\) 12.8640 + 22.2810i 0.443849 + 0.768769i
\(841\) −27.6274 −0.952670
\(842\) −3.44975 + 5.97514i −0.118886 + 0.205917i
\(843\) −2.41421 4.18154i −0.0831499 0.144020i
\(844\) −14.5208 25.1508i −0.499827 0.865726i
\(845\) −9.65685 −0.332206
\(846\) −5.65685 + 9.79796i −0.194487 + 0.336861i
\(847\) −19.8995 + 34.4669i −0.683755 + 1.18430i
\(848\) 0.257359 0.445759i 0.00883776 0.0153074i
\(849\) 2.82843 + 4.89898i 0.0970714 + 0.168133i
\(850\) −0.828427 + 1.43488i −0.0284148 + 0.0492159i
\(851\) 2.00000 + 3.46410i 0.0685591 + 0.118748i
\(852\) −130.054 −4.45557
\(853\) −32.4853 −1.11227 −0.556137 0.831090i \(-0.687717\pi\)
−0.556137 + 0.831090i \(0.687717\pi\)
\(854\) −8.24264 14.2767i −0.282057 0.488538i
\(855\) −2.24264 + 3.88437i −0.0766967 + 0.132843i
\(856\) 21.1569 + 36.6447i 0.723126 + 1.25249i
\(857\) 1.25736 2.17781i 0.0429506 0.0743926i −0.843751 0.536735i \(-0.819658\pi\)
0.886702 + 0.462342i \(0.152991\pi\)
\(858\) −27.9350 + 48.3849i −0.953686 + 1.65183i
\(859\) −6.30761 + 10.9251i −0.215213 + 0.372760i −0.953338 0.301904i \(-0.902378\pi\)
0.738125 + 0.674663i \(0.235711\pi\)
\(860\) −34.0711 −1.16181
\(861\) −27.6421 47.8776i −0.942041 1.63166i
\(862\) −30.4706 52.7766i −1.03783 1.79758i
\(863\) −19.6924 + 34.1082i −0.670337 + 1.16106i 0.307472 + 0.951557i \(0.400517\pi\)
−0.977809 + 0.209500i \(0.932816\pi\)
\(864\) −0.656854 −0.0223466
\(865\) 7.15685 + 12.3960i 0.243340 + 0.421478i
\(866\) −84.7696 −2.88059
\(867\) −40.9706 −1.39143
\(868\) 0 0
\(869\) 79.9117 2.71082
\(870\) −6.82843 −0.231505
\(871\) −4.79289 8.30153i −0.162401 0.281287i
\(872\) 22.8284 0.773068
\(873\) −15.3137 + 26.5241i −0.518291 + 0.897705i
\(874\) 7.65685 + 13.2621i 0.258997 + 0.448596i
\(875\) 10.8640 + 18.8169i 0.367269 + 0.636128i
\(876\) −35.3848 −1.19554
\(877\) −24.0858 + 41.7178i −0.813319 + 1.40871i 0.0972093 + 0.995264i \(0.469008\pi\)
−0.910529 + 0.413446i \(0.864325\pi\)
\(878\) −14.5711 + 25.2378i −0.491750 + 0.851735i
\(879\) 29.9350 51.8490i 1.00968 1.74882i
\(880\) −7.86396 13.6208i −0.265094 0.459156i
\(881\) 17.1569 29.7165i 0.578029 1.00118i −0.417676 0.908596i \(-0.637155\pi\)
0.995705 0.0925798i \(-0.0295113\pi\)
\(882\) −4.00000 6.92820i −0.134687 0.233285i
\(883\) −26.2843 −0.884536 −0.442268 0.896883i \(-0.645826\pi\)
−0.442268 + 0.896883i \(0.645826\pi\)
\(884\) −1.20101 −0.0403943
\(885\) 12.1569 + 21.0563i 0.408648 + 0.707799i
\(886\) −15.9853 + 27.6873i −0.537036 + 0.930174i
\(887\) −26.6630 46.1816i −0.895254 1.55063i −0.833490 0.552535i \(-0.813661\pi\)
−0.0617647 0.998091i \(-0.519673\pi\)
\(888\) −5.32843 + 9.22911i −0.178810 + 0.309709i
\(889\) −13.1569 + 22.7883i −0.441267 + 0.764296i
\(890\) 15.0711 26.1039i 0.505183 0.875003i
\(891\) −49.7279 −1.66595
\(892\) 3.30761 + 5.72895i 0.110747 + 0.191819i
\(893\) 1.31371 + 2.27541i 0.0439616 + 0.0761437i
\(894\) 2.91421 5.04757i 0.0974659 0.168816i
\(895\) 6.75736 0.225874
\(896\) −24.8137 42.9786i −0.828968 1.43581i
\(897\) −17.6569 −0.589545
\(898\) 11.1716 0.372800
\(899\) 0 0
\(900\) −43.3137 −1.44379
\(901\) −0.0294373 −0.000980697
\(902\) 60.0269 + 103.970i 1.99868 + 3.46181i
\(903\) −51.8701 −1.72613
\(904\) 11.7929 20.4259i 0.392226 0.679355i
\(905\) −5.15685 8.93193i −0.171420 0.296908i
\(906\) 50.4558 + 87.3921i 1.67628 + 2.90341i
\(907\) 55.3137 1.83666 0.918331 0.395814i \(-0.129537\pi\)
0.918331 + 0.395814i \(0.129537\pi\)
\(908\) 29.8345 51.6749i 0.990093 1.71489i
\(909\) −12.0000 + 20.7846i −0.398015 + 0.689382i
\(910\) −5.32843 + 9.22911i −0.176636 + 0.305942i
\(911\) 24.5208 + 42.4713i 0.812411 + 1.40714i 0.911172 + 0.412026i \(0.135179\pi\)
−0.0987614 + 0.995111i \(0.531488\pi\)
\(912\) −5.74264 + 9.94655i −0.190158 + 0.329363i
\(913\) 10.6716 + 18.4837i 0.353178 + 0.611721i
\(914\) 75.1127 2.48451
\(915\) −6.82843 −0.225741
\(916\) 21.9853 + 38.0796i 0.726414 + 1.25819i
\(917\) 5.74264 9.94655i 0.189639 0.328464i
\(918\) −0.0857864 0.148586i −0.00283137 0.00490408i
\(919\) 7.55025 13.0774i 0.249060 0.431384i −0.714205 0.699936i \(-0.753212\pi\)
0.963265 + 0.268552i \(0.0865451\pi\)
\(920\) 8.82843 15.2913i 0.291065 0.504139i
\(921\) 3.32843 5.76500i 0.109675 0.189963i
\(922\) 63.1127 2.07851
\(923\) −12.8640 22.2810i −0.423422 0.733389i
\(924\) −58.4914 101.310i −1.92423 3.33286i
\(925\) −2.00000 + 3.46410i −0.0657596 + 0.113899i
\(926\) 60.2843 1.98106
\(927\) 17.0711 + 29.5680i 0.560687 + 0.971139i
\(928\) 1.85786 0.0609874
\(929\) −24.4853 −0.803336 −0.401668 0.915785i \(-0.631569\pi\)
−0.401668 + 0.915785i \(0.631569\pi\)
\(930\) 0 0
\(931\) −1.85786 −0.0608890
\(932\) −56.7696 −1.85955
\(933\) 13.6569 + 23.6544i 0.447105 + 0.774409i
\(934\) 19.3137 0.631964
\(935\) −0.449747 + 0.778985i −0.0147083 + 0.0254755i
\(936\) −11.4142 19.7700i −0.373085 0.646203i
\(937\) −19.1569 33.1806i −0.625827 1.08396i −0.988380 0.152001i \(-0.951428\pi\)
0.362553 0.931963i \(-0.381905\pi\)
\(938\) 30.5563 0.997700
\(939\) 4.62132 8.00436i 0.150811 0.261212i
\(940\) 3.17157 5.49333i 0.103445 0.179173i
\(941\) −17.5000 + 30.3109i −0.570484 + 0.988107i 0.426033 + 0.904708i \(0.359911\pi\)
−0.996516 + 0.0833989i \(0.973422\pi\)
\(942\) 43.2132 + 74.8475i 1.40796 + 2.43866i
\(943\) −18.9706 + 32.8580i −0.617767 + 1.07000i
\(944\) 15.1066 + 26.1654i 0.491678 + 0.851611i
\(945\) −1.00000 −0.0325300
\(946\) 112.640 3.66223
\(947\) 19.4497 + 33.6880i 0.632032 + 1.09471i 0.987136 + 0.159884i \(0.0511122\pi\)
−0.355104 + 0.934827i \(0.615555\pi\)
\(948\) −70.4411 + 122.008i −2.28782 + 3.96262i
\(949\) −3.50000 6.06218i −0.113615 0.196787i
\(950\) −7.65685 + 13.2621i −0.248421 + 0.430278i
\(951\) 2.62132 4.54026i 0.0850021 0.147228i
\(952\) 0.914214 1.58346i 0.0296298 0.0513204i
\(953\) −20.4853 −0.663583 −0.331792 0.943353i \(-0.607653\pi\)
−0.331792 + 0.943353i \(0.607653\pi\)
\(954\) −0.585786 1.01461i −0.0189655 0.0328493i
\(955\) 0.550253 + 0.953065i 0.0178058 + 0.0308405i
\(956\) −24.4203 + 42.2972i −0.789809 + 1.36799i
\(957\) 14.8284 0.479335
\(958\) 11.7426 + 20.3389i 0.379387 + 0.657118i
\(959\) 18.0711 0.583545
\(960\) −23.7279 −0.765815
\(961\) 0 0
\(962\) −4.41421 −0.142320
\(963\) 27.1127 0.873694
\(964\) 47.1985 + 81.7502i 1.52016 + 2.63300i
\(965\) −21.1421 −0.680589
\(966\) 28.1421 48.7436i 0.905458 1.56830i
\(967\) −23.2782 40.3190i −0.748576 1.29657i −0.948505 0.316761i \(-0.897405\pi\)
0.199930 0.979810i \(-0.435929\pi\)
\(968\) 36.3848 + 63.0203i 1.16945 + 2.02555i
\(969\) 0.656854 0.0211012
\(970\) 13.0711 22.6398i 0.419687 0.726919i
\(971\) −29.3492 + 50.8344i −0.941862 + 1.63135i −0.179947 + 0.983676i \(0.557592\pi\)
−0.761915 + 0.647676i \(0.775741\pi\)
\(972\) 41.4558 71.8036i 1.32970 2.30310i
\(973\) 0 0
\(974\) 20.9853 36.3476i 0.672412 1.16465i
\(975\) −8.82843 15.2913i −0.282736 0.489713i
\(976\) −8.48528 −0.271607
\(977\) 16.4853 0.527411 0.263705 0.964603i \(-0.415055\pi\)
0.263705 + 0.964603i \(0.415055\pi\)
\(978\) −37.7990 65.4698i −1.20868 2.09349i
\(979\) −32.7279 + 56.6864i −1.04599 + 1.81171i
\(980\) 2.24264 + 3.88437i 0.0716385 + 0.124082i
\(981\) 7.31371 12.6677i 0.233509 0.404449i
\(982\) −5.32843 + 9.22911i −0.170037 + 0.294513i
\(983\) 24.4203 42.2972i 0.778887 1.34907i −0.153697 0.988118i \(-0.549118\pi\)
0.932584 0.360954i \(-0.117549\pi\)
\(984\) −101.083 −3.22242
\(985\) 1.74264 + 3.01834i 0.0555251 + 0.0961724i
\(986\) 0.242641 + 0.420266i 0.00772725 + 0.0133840i
\(987\) 4.82843 8.36308i 0.153691 0.266200i
\(988\) −11.1005 −0.353154
\(989\) 17.7990 + 30.8288i 0.565975 + 0.980297i
\(990\) −35.7990 −1.13777
\(991\) 19.9411 0.633451 0.316725 0.948517i \(-0.397417\pi\)
0.316725 + 0.948517i \(0.397417\pi\)
\(992\) 0 0
\(993\) −1.82843 −0.0580234
\(994\) 82.0122 2.60127
\(995\) 7.79289 + 13.4977i 0.247051 + 0.427905i
\(996\) −37.6274 −1.19227
\(997\) 23.2990 40.3550i 0.737886 1.27806i −0.215559 0.976491i \(-0.569157\pi\)
0.953445 0.301566i \(-0.0975093\pi\)
\(998\) −48.5416 84.0766i −1.53656 2.66140i
\(999\) −0.207107 0.358719i −0.00655257 0.0113494i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.a.521.1 4
31.2 even 5 961.2.g.r.844.1 16
31.3 odd 30 961.2.d.l.628.1 8
31.4 even 5 961.2.g.r.338.2 16
31.5 even 3 inner 961.2.c.a.439.1 4
31.6 odd 6 961.2.a.a.1.1 2
31.7 even 15 961.2.d.i.388.2 8
31.8 even 5 961.2.g.r.732.2 16
31.9 even 15 961.2.g.r.816.2 16
31.10 even 15 961.2.g.r.547.1 16
31.11 odd 30 961.2.g.o.235.2 16
31.12 odd 30 961.2.d.l.531.1 8
31.13 odd 30 961.2.g.o.846.1 16
31.14 even 15 961.2.d.i.374.2 8
31.15 odd 10 961.2.g.o.448.1 16
31.16 even 5 961.2.g.r.448.1 16
31.17 odd 30 961.2.d.l.374.2 8
31.18 even 15 961.2.g.r.846.1 16
31.19 even 15 961.2.d.i.531.1 8
31.20 even 15 961.2.g.r.235.2 16
31.21 odd 30 961.2.g.o.547.1 16
31.22 odd 30 961.2.g.o.816.2 16
31.23 odd 10 961.2.g.o.732.2 16
31.24 odd 30 961.2.d.l.388.2 8
31.25 even 3 961.2.a.c.1.1 2
31.26 odd 6 31.2.c.a.5.1 4
31.27 odd 10 961.2.g.o.338.2 16
31.28 even 15 961.2.d.i.628.1 8
31.29 odd 10 961.2.g.o.844.1 16
31.30 odd 2 31.2.c.a.25.1 yes 4
93.26 even 6 279.2.h.c.253.2 4
93.56 odd 6 8649.2.a.k.1.2 2
93.68 even 6 8649.2.a.l.1.2 2
93.92 even 2 279.2.h.c.118.2 4
124.119 even 6 496.2.i.h.129.1 4
124.123 even 2 496.2.i.h.273.1 4
155.57 even 12 775.2.o.d.749.1 8
155.88 even 12 775.2.o.d.749.4 8
155.92 even 4 775.2.o.d.149.1 8
155.119 odd 6 775.2.e.e.501.2 4
155.123 even 4 775.2.o.d.149.4 8
155.154 odd 2 775.2.e.e.676.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.c.a.5.1 4 31.26 odd 6
31.2.c.a.25.1 yes 4 31.30 odd 2
279.2.h.c.118.2 4 93.92 even 2
279.2.h.c.253.2 4 93.26 even 6
496.2.i.h.129.1 4 124.119 even 6
496.2.i.h.273.1 4 124.123 even 2
775.2.e.e.501.2 4 155.119 odd 6
775.2.e.e.676.2 4 155.154 odd 2
775.2.o.d.149.1 8 155.92 even 4
775.2.o.d.149.4 8 155.123 even 4
775.2.o.d.749.1 8 155.57 even 12
775.2.o.d.749.4 8 155.88 even 12
961.2.a.a.1.1 2 31.6 odd 6
961.2.a.c.1.1 2 31.25 even 3
961.2.c.a.439.1 4 31.5 even 3 inner
961.2.c.a.521.1 4 1.1 even 1 trivial
961.2.d.i.374.2 8 31.14 even 15
961.2.d.i.388.2 8 31.7 even 15
961.2.d.i.531.1 8 31.19 even 15
961.2.d.i.628.1 8 31.28 even 15
961.2.d.l.374.2 8 31.17 odd 30
961.2.d.l.388.2 8 31.24 odd 30
961.2.d.l.531.1 8 31.12 odd 30
961.2.d.l.628.1 8 31.3 odd 30
961.2.g.o.235.2 16 31.11 odd 30
961.2.g.o.338.2 16 31.27 odd 10
961.2.g.o.448.1 16 31.15 odd 10
961.2.g.o.547.1 16 31.21 odd 30
961.2.g.o.732.2 16 31.23 odd 10
961.2.g.o.816.2 16 31.22 odd 30
961.2.g.o.844.1 16 31.29 odd 10
961.2.g.o.846.1 16 31.13 odd 30
961.2.g.r.235.2 16 31.20 even 15
961.2.g.r.338.2 16 31.4 even 5
961.2.g.r.448.1 16 31.16 even 5
961.2.g.r.547.1 16 31.10 even 15
961.2.g.r.732.2 16 31.8 even 5
961.2.g.r.816.2 16 31.9 even 15
961.2.g.r.844.1 16 31.2 even 5
961.2.g.r.846.1 16 31.18 even 15
8649.2.a.k.1.2 2 93.56 odd 6
8649.2.a.l.1.2 2 93.68 even 6